
AIE1007: Natural Language Processing

L9: Recurrent neural networks

Autumn 2024

Midterm logistics

• A 3-hour timed exam from March 7th 1:30pm (Thu) to March 8th 4:30pm (Fri)

• We will provide email support for the following times:

Mar 7, 1:30-3:30pm

Mar 7, 5:30-7:30pm

Mar 8, 8-10am

Mar 8, 10am-12pm

Mar 8, 1pm-3pm

• Open-book (lecture slides & readings), no internet / ChatGPT allowed

• Practice midterms have been released on Ed

• All topics up to today’s lecture will be covered in the midterm

Recurrent neural networks (RNNs)
How can we model sequences using neural networks?

• Recurrent neural networks = A class of neural networks used to model sequences,

allowing to handle variable length inputs

• Very crucial in NLP problems (different from images) because sentences/paragraphs are

variable-length, sequential inputs

DT NN VB IN

The cat sat on

HMM

DT NN VB IN

The cat sat on

MEMM

Recap: n-gram vs neural language models

Language models: Given x1, x2, …, xn ∈V, the goal is to model:
n

P(x1, x2, …, xn) = ∏ P(xi ∣ x1, …, xi−1)

i=1

P(sat|the cat) =
count(the cat sat)

count(the cat)

N-gram models:

As the proctor started the clock, the students opened their

Dilemma:

• We need to model bigger context!

• The # of probabilities that we need

to estimate grow exponentially with

window size!

Recap: Feedforward neural language models

P(mat | the cat sat on the) = ?

Feedforward neural language models approximate the probability based on

the previous m (e.g., 5) words - m is a hyper-parameter!
n

P(x1, x2, …, xn) ≈∏ P(xi ∣ xi−m+1, …, xi−1)

i=1 the

cat

sat

on

the

P (w = i)?

R5d Rh

Rd

d: word embedding size

h: hidden size

It is a |V|-way classification problem!

Recap: Feedforward neural language models

the

cat

sat

on

the

P (w = i)?

R5d Rh

P(mat | the cat sat on the) = ? d: word embedding size h: hidden size

Rd

•

Hidden layer:

h = tanh(Wx + b) ∈ℝh

Output layer

z = Uh 2 R|V |

P (w = i | the cat sat on the)

e
z i

= softmaxi (z) = P

k e
zk

• Input layer (m= 5):

x = [e(the); e(cat); e(sat); e(on); e(the)] ∈ℝmd

•

Recap: Feedforward neural language models

Limitations?

• W linearly scales with the context size m

• The models learns separate patterns

for different positions!

The Fat Cat Sat on the Mat is a 1996

children's book by Nurit Karlin. Published by

Harper Collins as part of the reading

readiness program, the book stresses the

ability to read words of specific structure,

such as -at.

the fat cat sat on the

fat cat sat on the mat

cat sat on the mat is

sat on the mat is a

…

W[: ,3d : 5d]

the fat cat sat on the

fat cat sat on the mat

cat sat on the mat is

“sat on” corresponds to

different parameters in W

W[: ,1d : 3d]

Recurrent neural networks (RNNs)

A family of neural networks that can handle variable length inputs

A function: y = RNN(x1, x2, …, xn) ∈ℝh where x1, …, xn ∈ℝ
d

Core idea: apply the same weights repeatedly at different positions!

Recurrent neural networks (RNNs)

Highly effective approach for language modeling, sequence tagging, text classification:

Language modeling Sequence tagging

The movie sucks .

Text classification

the students opened their …exams

…

Recurrent neural networks (RNNs)

Form the basis for the modern approaches to machine translation, question

answering and dialogue systems:

sequence-to-sequence models

(Sutskever et al., 2014): Sequence to Sequence Learning with Neural Networks

Simple recurrent neural networks

ht = g(Wht−1 + Uxt + b) ∈ℝh

Simple RNNs:

W ∈ℝh×h,U ∈ℝh×d, b ∈ℝh

This model contains h×(h + d + 1) parameters, and

optionally h for h0 (a common way is just to set h0 as 0)

g: nonlinearity (e.g. tanh, ReLU),

h0 ∈ℝ
h is an initial state

ht = f(ht−1, xt) ∈ℝ
h

ht : hidden states which store information from x1 to xt

A function: y = RNN(x1, x2, …, xn) ∈ℝh where x1, …, xn ∈ℝ
d

Simple recurrent neural networks

x2 x4

ht = g(Wht−1 + Uxt + b) ∈ℝh

Key idea: apply the same weights W,U, b repeatedly

y1̂ y2̂ y3̂ y4

U U U U

x1 x3

h1 h2 h3 h4

RNNs vs Feedforward NNs

ht = g(Wht−1 + Uxt + b) ∈ℝh
h1 = g(W(1)x + b(1)) ∈ℝh1

h2 = g(W(2)h1 + b(2)) ∈ℝh2

Recurrent neural language models (RNNLMs)

Recurrent neural language models (RNNLMs)

P(w1, w2, …, wn) = P(w1) ×P(w2 ∣w1) ×P(w3 ∣w1, w2) ×…×P(wn ∣w1, w2, …, wn−1)

= P(w1 ∣h0) ×P(w2 ∣h1) ×P(w3 ∣h2) ×…×P(wn ∣hn−1)

y0̂ y1̂ y2̂ y3̂ y4

No Markov

assumption here!

Denote ŷt = softmax(Woht), Wo ∈ℝ
|V|×h

= y0̂(w1) ×y1̂(w2) . . . ×yn̂−1(wn)

y1̂(w2) = the probability of w2

the students opened their …exams

…

Wo Wo Wo

Wo
h0 h2 h4

h3

x1 x2

w1 w2 w3 w4

x3 x4

h1

Recurrent neural language models (RNNLMs)

̂ ht = g(Wht−1 + Uxt + b) ∈ℝh

ŷt = softmax(Woht)

Training loss:

Trainable parameters:

θ = {W,U, b,Wo,E}

L(θ) = −
1

n ∑

n

t=1

log ŷ (w)t−1 t

the students opened their …exams

…

Wo Wo Wo Wo

ŷ ŷ ŷ ŷ y0 1 2 3 4

h0 h4h2
h3

x1 x2

w1 w2 w3 w4

x3 x4

h1

RNNLMs: weight tying

the students opened their …exams

…

Wo Wo Wo Wo

y0̂ y1̂ y2̂ y3̂ y4̂
word embeddings (= input embeddings):

E ∈ℝ|V|×d

output embeddings:

Wo ∈ℝ
|V|×h

If d = h, we can just merge E and Wo!

θ = {W,U, b,E}

It works better empirically and becomes a common

practice

Progress on language models

On the Penn Treebank (PTB) dataset

Metric: perplexity

KN5: Kneser-Ney 5-gram

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

Progress on language models

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

On the Penn Treebank (PTB) dataset

Metric: perplexity

RNNs: pros and cons

Advantages:

•
•
•

Can process any length input

Computation for step t can (in theory) use information from many steps back

Model size doesn’t increase for longer input context

Disadvantages:

•
•

Recurrent computation is slow (can’t parallelize)

In practice, difficult to access information from many steps back

(optimization issue)

Transformers can!

We will see some advanced RNNs (e.g., LSTMs, GRUs)

Training RNNLMs

•

•

Forward pass + backward pass (compute gradients)

For t =1, 2, …, n

y = − log softmax(Woht−1)(wt)

xt = e(wt)

ht = g(Wht−1 + Uxt + b)

L = L +
1

y
n

Forward pass:

L = 0 h0 = 0

accumulate loss

What is the running time of a forward pass?

What is the running time of a forward pass?

(a) O(h×(d + h + |V|))

(b) O(n×h×(d + h + |V|))

(c) O(n×(d + h + |V|))

(d) O(n×h×(d + h))

The answer is (b).

For t =1, 2, …, n

y = − log softmax(W h

xt = e(wt)

ht = g(Wht−1 + Uxt + b)

L = L +
1

y

o t−1 t)(w)

n

L = 0 h0 = 0

n = number of time steps

h = hidden dimension

d = word vector dimension

V = output vocabulary

Training RNNLMs

• Backward pass:

• The algorithm is called Backpropagation Through Time (BPTT).

y1

y2

y3

ReLU ReLU

•

x1

Backpropagation? Yes, but not that simple!

x2

h(1)
1

h(1)
2

h(2)
1

h(2)
2

L
W(o)

W(2)W(1)

x3

Backpropagation through time
h1 = g(Wh0 + Ux1 + b)

h2 = g(Wh1 + Ux2 + b)

h3 = g(Wh2 + Ux3 + b)

L3 = − log ŷ3(w4)

First, compute gradient with respect to hidden vector of last time step:
∂L3

∂h3

∂L3 =
∂L3 ∂h3 +

∂L3 ∂h3 ∂h2 +
∂L3 ∂h3 ∂h2 ∂h1

∂W ∂h3 ∂W ∂h3 ∂h2 ∂W ∂h3 ∂h2 ∂h1 ∂W

If k and t are far away, the gradients can grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)

∂L

∂W
= −

1
n ∑ ∑ ∂ht

n t

t=1 k=1

∂Lt
t

∏ ∂hj−1
j=k+1

∂hj ∂hk

∂W
More generally,

ŷ3 = softmax(Woh3)

What if gradients become too large or small?

What will happen if the gradients become too large or too small?

(a) If too large, the model will become difficult to converge

(b) If too small, the model can’t capture long-term dependencies

(c) If too small, the model may capture a wrong recent dependency

(d) All of the above

All of these are correct, so (d)

Backpropagation through time

One solution for gradient exploding is called gradient clipping — if the norm of the

gradient is greater than some threshold, scale it down before applying SGD update.

Intuition: take a step in the same direction but a smaller step!

the students opened theirAs the proctor started the clock,

Gradient vanishing is a harder problem to solve:

Truncated backpropagation through time

• Backpropagation is very expensive if you handle long sequences

•

•

Run forward and backward through chunks of the sequence instead of whole sequence

Carry hidden states forward in time forever, but only back-propagate for some smaller number of steps

Applications and variants

Application:Text generation

You can generate text by repeated sampling.

Sampled output is next step’s input.

http:/ /karpathy.github.io/2015/05/21/rnn-effectiveness/

You can train an RNN-LM on any kind of text, then generate text in that style.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https:/ /medium.com/ @ samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

You can train an RNN-LM on any kind of text, then generate text in that style.

https://medium.com/%40samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Application: Sequence tagging

P(yi = k) = softmaxk(Wohi) Wo ∈
ℝC×h

L = − log P(yi = k)
n ∑
1

n

i=1

Input: a sentence of n words: x1, …, xn

Output: y1, …, yn, yi ∈ {1,…C}

Application:Text Classification

the movie was terribly exciting !

hn

Input: a sentence of n words

Output: y∈ {1,2,…, C}

P(y = k) = softmaxk(Wohn)

L = − log P(y = c)

Wo ∈
ℝC×h

Multi-layer RNNs

•
•
•

RNNs are already “deep” on one dimension (unroll over time steps)

We can also make them “deep” in another dimension by applying multiple RNNs

Multi-layer RNNs are also called stacked RNNs.

Multi-layer RNNs

The hidden states from RNN layer i

are the inputs to RNN layer i + 1

•
•

In practice, using 2 to 4 layers is common (usually better than 1 layer)

Transformer networks can be up to 24 layers with lots of skip-connections

Bidirectional RNNs

Bidirectionality is important in language representations:

terribly:

•left context “the movie was”

•right context “exciting !”

Bidirectional RNNs

ht = f(ht−1, xt) ∈ℝ
h

h t = f1(h t−1, xt), t = 1,2,…n

h t = f2(h t+1, xt), t = n, n−1,…1

ht = [h t, h t] ∈ℝ
2h

When can we use bidirectional RNNs?

Can we use bidirectional RNNs in the following tasks?

(1)text classification, (2) sequence tagging, (3) text generation

(a) Yes, Yes, Yes

(b) Yes, No, Yes

(c) Yes, Yes, No

(d) No, Yes, No

The answer is (c).

Bidirectional RNNs

• Sequence tagging: Yes! (esp. important)

Bidirectional RNNs

•

•

Sequence tagging: Yes!

• Text generation: No. Because we can’t see the future to predict the next word.

terribly exciting !the movie was

terribly exciting !the movie was

Sentence encoding

Text classification: Yes!

• Common practice: concatenate the last hidden vectors in two directions or take the

mean/max over all the hidden vectors

A note on terminology

• Simple RNNs are also called vanilla RNNs

• Sometimes vanilla RNNs don’t work that well, so we need to use some advanced

RNN variants such as LST or GRUs (next lecture)
Ms

• In practice, we generally use multi-layer RNNs

… together with fancy ingredients such as residual

connections with self-attention, variational dropout..

