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From word embeddings to neural networks
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eural networks in NLP

Feed-forward NNs
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Neural networks for NLP: History



NN “dark ages”

e Neural network algorithms date from the 80s

e ConvNets: applied to MNIST by LeCun in 1998

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

amas = CS.layer rg:jayer OUTPUT
120 84 10

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

block output (.;9

LSTM block

e Long Short-term Memory Networks (LSTMs): Hochreiter
and Schmidhuber 1997

e Henderson 2003: neural shift-reduce parser, not SOTA

Slide credit: Greg Durrett



2008-201 3: A glimmer of light

e Collobert and Weston 2011: “NLP (almost) from
Scratch”

e Feedforward NNs can replace “feature engineering”

e 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

e Krizhevskey et al, 2012: AlexNet for ImageNet Classification

e Socher 2011-2014: tree-structured RNNs working okay

not very good...
a b C

Slide credit: Greg Durrett



2014: Stuff starts working

e Kim (2014) + Kalchbrenner et al, 2014: sentence classification
e ConvNets work for NLP!

o Sutskever et al, 2014: sequence-to-sequence for neural MT
e LSTMs work for NLP!

e Chen and Manning 2014: dependency parsing
e Even feedforward networks work well for NLP!

e 2015: explosion of neural networks for everything under the sun

e 2018-2019: NLP has entered the era of pre-trained models (ELMo, GPT, BERT)

o 2020+: the emergency of large language models (GPT-3, ChatGPT)

Slide credit: Greg Durrett



Why didn’t they work before!?

e Datasets too small: for machine translation, not really better until you have
1M+ parallel sentences (and really need a lot more)

e Optimization not well understood: good initialization, per-feature scaling +
momentum (Adagrad/Adam) work best out-of-the-box

e Regularization: dropout is pretty helpful
e Computers not big enough: can’t run for enough iterations

e Inputs: need word embeddings to represent continuous semantics

Slide credit: Greg Durrett



The “promise” of deep learning

e Most NLP works in the past focused on human-designed representations and input
features

Var Definition Value in Fig. 5.2
X1 count(positive lexicon) € doc) 3

xp  count(negative lexicon) € doc) 2

" J 1 if “no” € doc i

- | 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
(1 if “1” € doc
3 <L 0 otherwise .
x¢  log(word count of doc) In(64) =4.15

e Representation learning attempts to automatically

learn good features and representations Low-level features Mid-level features Abstract-level features
P i R - ; ’:KA’Z‘.:JI*. '“Q‘ .7' 'Tli
: : W Y R LE!“J.":’?“' el ,g
e Deep learning attempts to learn multiple levels of S AL B0 ERaTI=a

representations on increasing complexity/abstraction — FEEEEREEE -\ BEV-=N -
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Review: Feedforward neural networks



Feed-forward NNs

* The units are connected with no cycles
e The outputs from units in each layer are passed to units in the next higher layer

e NoO outputs are passed back to lower layers

A Fully-connected (FC) layers:
‘. All the units from one layer
‘\\ ‘ output layer are fully connected to

every unit of the next layer.

iInput layer
hidden layer 1 hidden layer 2



Feed-forward NNs
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\\ @ output layer

iInput layer
hidden layer 1 hidden layer 2

40 = S+ s+

f‘ o(w - x)
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non-linearity f:  tanh or RelLU.




Activation functions

RelLU
sigmoid tanh (rectified linear unit)
1 | — 0
f@) =7, F@)= ooy f(z) = max(0, z)
1/* R(z) =maz(0, 2)
(1 250
fiz2) = f@) ~(1- £ @) fAz)=1- f(2) FRz)= - %7

0 z<0



Matrix notations

e Inputlayer: x2 R

WA
O

e Hidden layer 1:

w h; = fF(WDx + b)) 2 R

‘ output layer w(l) 2 Rdi~d p(1) 2 R

2\,
L

iInput layer

hidden layer 1 hidden layer 2 * Hidden layer 2:

h, = f(W(@h; + b)) 2 R4%
*-fis applied element-wise W) 2 R&2~d1 B(2) 2 R4

f(lzy,ze,25]) = [f (z1),f (za), f(Z5)] * Qutput layer:

C: number of classes

p— ( ) ( ) C—"d
d: input dimension, d,, d,: hidden dimensions y = Wi%h,, Wio) 2 R~



Feedforward NNs

RelLU

(Bias terms omitted in
the next few slides)

Forx, = x, = x5 = 1, what is the value of h1<1>?

@0 (b)-1 (¢)1 (d)2

Correct: (a), because of the RELU:
max(2x1+(-3)x1+0x1,0)=max(-1,0)=0



Feedforward NNs for multi-class classification

y = W(O)hZ,W(O) 7 RC—"dz

. exp (Vi)
y = sottmax(y) sottmax(y), = 5 C Y= Yo, -l
Training loss:
aining 10ss h() = Rel.UW®x)
mh— =3 logy, h® = ReLUW@hD)
(1) (2) (0) X, y)eD "
W, W, W (X) y = softmax(W©@h®)
Training feedforward NNSs: Neural networks are difficult to optimize.
stochastic gradient descent! SGD can only converge to local minimum.

Initializations and optimizers matter a lot!



Forward propagation:

Back-propagation

from input to output layer

Given: x, X,, X3

Forward step 1:
Compute h1<1>’ h2<1>

Forward ste
Compute A (?
1

P2,
2

and the class

Forward step 3:
Compute V15V2, V3 and

@135@}3] = softmax|yy, ¥», V]

__@ L = _1Og§y

Forward step 4:
l Compute loss

Back propagation:

Back step 2:
Caompute :
ArPdiey, Back step 1:
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Back-propagation in Py lorch

O 00O NNOYWL B WIN B

= = B = =
i dH WN =

b

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

def

def

__init__(self):

super().__init__ ()

self.fcl = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

forward(self, x):

X = F.relu(self.fcl(x))
X = F.relu(self.fc2(x))
x = self.fc3(x)

return X

b &6 W N =

import torch.optim as optim

net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), 1r=0.001, momentum=0.9)

W N =

outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizerggstep()

Py Torch did back-propagation for you in this one line of code!




Comparison: image vs text inputs
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a sometimes tedious film

| had to look away - this was god awful . label

positive
a gorgeous , witty , seductive movie .

®* Images: fixed-size input, continuous values

® Text: variable-length input, discrete words
®* need to convert into vectors - word embeddings!



Neural "bag-of-words™ models for
text classification



Neural networks for text classification

o Input: wi,w,,....wp €V e Input: dessert was great

e Output:y € C e Output: positive C = {positive, negative, neutral}

Solution #1: You can construct a feature vector from the input and simply feed the
vector to a neural network, instead of a logistic regression classifier!

e | womson . .@Q\ — (each x; is a hand-designed feature)
N L g
D e V% - NN o
was }pos\::)ﬁsliulcon "2 XV'A. > ‘.@ —p(-) X — [X1> X2, eees Xn]
< Vo * h = tanh(Wx + b)
great ) count: o(t)'“no” X, | —>p(neut)
ba — * y="Uh
Input words X W h U Y A
X1] [dyxn] g gy Bxd) BX1) * y = softmax(y)

Input layer  Hidden layer Output layer _ _
n=3 features softmax Deep learning has the promise to learn good

features automatically..



Neural networks for text classification

e How can we feed a variable-length input to a neural network classifier? w;, w,, ..., wg € V'

Solution #2: Let’s take the all the word embeddings of these words and aggregate them
into a vector through some pooling function!

K
1
Xmean = 'y W) pooling: sum, mean or max
embedding for (@) K
dessert— “dessert” _.oling —p(+) o - L e (W)
_embsddir:,g for _’2 _>+ - —p(-) K Z l
was was / =1
embedding for |®) —
greas—pis 3 — b * h = tanh(Wx + b)
Input words X W ‘} U y ¢ y — Uh
[dX1] [dth] [3Xdy ] [3x1] A

[dhx 1]

* y = softmax(y)

Input layer Hidden layer Output layer
pooled softmax
embedding



Neural networks for text classification

® (+): This provides a simple and flexible way to handle variable-length input

(+):
* (+): It learns feature representations automatically from the data
® (+): It can generalize to similar inputs through word embeddings

®* (-): The model throws away any sequential information of the text

| love this movie! It's sweet, _ ) "
but with satirical humor. The fairy aiways 10veto
dialogue is great and the an'(tj whimsical, it |
adventure scenes are fun... friend oo .. anyone
N happy dialogue
It manages to be whimsical oEommend
| b f d del (NBOW and romantic while laughin adventure firical
neural bag-of-words model ( ) while aughing vewast of sallical |
at the conventions of the it | pytto rronn(?I\élnetiC
fairy tale genre. | would several yet ) |
recommend it to just about e 292IN_jt the {mor
anyone. I've seen it several to scenes | would
: \ the ..the manage
times, and I'm always happy fun | times gnq
to see it again whenever | and ot o
: ' whenever while
have a friend who hasn't " conventions Nave
seen it yet! with

15

whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great

: _ A M A A a aaaa-apNLOWwWN oo



How to train this model?

. K
* X =7 e(w;
e Training data: {(d1), y(), ..., (d"™, ym)} K lzﬂ (W)
* Parameters: {W, b, U} * h = tanh(Wx + b)
®* Optimize these parameters using gradient descent! e y=Uh

® —
* Word embeddings can be treated as parameters too! y = softmax(y)

E € RV



How to train this model?

®* Common practice: initialize K using word embeddings

(e.g. word2vec), and optimize them using SGD!

®* When the training data is small, don't treat
K as parameters!

®* When the training data is very large (e.g., language
modeling), initialization doesn’t matter much either
(= can use random initialization)

Why? v(good) = v(bad)

Most Similar Words for

Static Non-static
good terrible
bad terrible horrible
horrible lousy
lousy stupid
great nice
— bad decent
terrific solid
decent terrific

(Kim 2014)



Deep Averaging Networks (DAN)

Deep Unordered Composition Rivals Syntactic Methods

(lyyer et al., 2015) for Text Classification

DAN
softmax
hy = f(Wa - h1 +ba) Basically the same as NBOW
i |
hy = F(W - av+ by) but neural network is deeper!
[T T T Jav= 3 < f: non-linearity
(////////////::;:/’ N\::::\\\\\\\iii\\\
Predator is a masterpiece

C1 Co C3 Cq



Feedforward neural language models



N-gram vs neural language models

Language models: Given xq, x,, ..., x, € V, the goal is to model:

P(x, X5, ..., X,) = M P(x; | x, ..., %)

=1
n

Bigram: P(x,x,, ..., Xx,) = M P(x; | x;—)
i=1
7 count(the cat sat)

Maximum likelihood estimate:

Trigram: P(x;, x,, ..., X,) = i P(x; | x;,x,—y)  P(satjthe cat) = count(the cat)
i=1

Limitations? Can’t handle long histories!

As the proctor started the clock, the students opened their

The keys to the cabinet is/are



N-gram vs neural language models

®* If we use a 4-gram, 5-gram, 6-gram language model, it will become too sparse to

estimate the probabillities:

P(w | students opened their) =

Dilemma:

®* We need to model bigger context!

®* The # of probabilities that we need
to estimate grow exponentially with
window size!
? ?

&

count(students opened their W)

count(students opened their)

® Alot of contexts are similar and simply
counting them won't generalize

|am a good
count(l am a good w)
| am a great
count(l am a great w)
e(good) e(great)

Can we estimate the probabilities better?



Feedforward neural language models

A Neural Probabilistic Language Model (Bengio et al., 2003)

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Yoshua Bengio

Probabilistic models of sequences: In the 1990s, Bengio combined neural networks with probabilistic
models of sequences, such as hidden Markov models. These ideas were incorporated into a system
used by AT&T/NCR for reading handwritten checks, were considered a pinnacle of neural network

research in the 1990s, and modern deep learning speech recognition systems are extending these
concepts.

@gh-dimensional word embeddings and attention: In 2000, Bengio authored the landmark paper, “A\
Neural Probabilistic Language Model,” that introduced high-dimension word embeddings as a
representation of word meaning. Bengio’s insights had a huge and lasting impact on natural language
processing tasks including language translation, question answering, and visual question answering.
His group also introduced a form of attention mechanism which led to breakthroughs in machine
Qanslation and form a key component of sequential processing with deep learning. J

Generative adversarial networks: Since 2010, Bengio’s papers on generative deep learning, in
particular the Generative Adversarial Networks (GANs) developed with Ian Goodfellow, have spawned
a revolution in computer vision and computer graphics. In one fascinating application of this work,

computers can actually create original images, reminiscent of the creativity that is considered a
hallmark of human intelligence.

https://awards.acm.org/about/2018-turing



Feedforward neural language models

A Neural Probabilistic Language Model (Bengio et al., 2003)

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Key idea: Instead of estimating raw probabilities, let’s use a
neural network to fit the probabilistic distribution of language!

P(w |l am a good)

Pw |l am a great)

Key ingredient: word embeddings e(good) e(great)

Hope: this would give us similar distributions for similar contexts!



Feedforward neural language models

®* Feedforward neural language models approximate the probability based
on the previous m (e.g., 5) words - m is a hyper-parameter!

n

DXy, Xp, o0, Xp) R I PG | Xi ity -5 Xic1) R4
=1 the—’:]
Q5d Rh
P(mat | the cat sat on the) = ? g 0 ®)
cat = O O
O O
O O
; | | 4o O .
d: word embedding size Sat_» Ol —» (0| — p(w = i?
O O
h: hidden size / o o
on —> —/ \_/

It is a |V|-way classification problem!

the™ @



Feedforward neural language models

P(mat | the cat satonthe)="7  d:. word embedding size h: hidden size

® Input layer (m= 5):
X = [e(the); e(cat); e(sat); e(on); e(the)| € R™4

the =
Q5d Rh
e Hidden layer: cat —> 3 3
h = tanh(Wx + b) € R” o o
ol— ol — P(w=i)?
e Output layer sat = 8 8
O O
z=Uh 2RIV o o ©

P(w = i | the cat sat on the)

/

ﬁ

D

@
v

= softmax;(z) = P
k €



What are the dimensions of W and U? m

e |[nput layer (m= 5):
x = [e(the); e(cat); e(sat); e(on); e(the)] € R™

d: word embedding size, h: hidden size

(a) W € R U € RV e Hidden layer:

(b) W € R>5d J e RIVIX: h = tanh(Wx + b) € R”
(C) W & [RhXSd, U & [R|V|><d ® Output Iayer

d) W € R U € Ra* z — Uh € R!V!

P(w = 1 | the cat sat on the)

2

Correct: (b) = softmax;(z)

e
Y e



Feedforward neural language models

®* How to train this model? A: Use a lot of raw text to create training
examples and run gradient-descent optimization!

The Fat Cat Sat on the Mat is a 1996
children's book by Nurit Karlin. Published by the fat cat saton  the
Harper Collins as part of the reading , fatcatsatonthe mat

readiness program, the book stresses the
ability to read words of specific structure,
such as -at.

cat sat on the mat IS
sat on the mat is a

®* Limitations?

* W linearly scales with the context size m the tat cat the
fat cat the mat

®* The models learns separate patterns cat the mat s
for different positions! B

“sat on” corresponds to

®* Better solutions: recurrent NNs, Transformers.. different parameters in W



Convolutional NNs for text classification



Convolutional NNs in image classification

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

'_ ------- ~~—— docga(to('g.lgtt)
e % Ry

Key components: 1) convolution; 2) pooling; 3) multiple channels (feature maps)



Convolutional NNs for text classification
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Convolutional layer with
multiple filter widths and
feature maps

Max-over-time Fully connected layer
pooling with dropout and
softmax output

(Kim 2014): Convolutional Neural Networks for Sentence Classification



