
AIE1007: Natural Language Processing

L8: Neural networks for NLP

Autumn 2024

From word embeddings to neural networks

I don’t

0.31 0.01
(−0.28) (−0.91)

1.87
(0.03)

−3.17
(−0.18)

1.23

(1.59)

like this movie

Neural Network

v =cat

0

B
B@- 0.290A

0.276

- 0.224

0.130

1

C
C

vdog = B

0

B
@- 0.200A

0.329

- 0.124

0.430

1

C
C

vthe = B
0.239

C

0
0.234

1

B 0.266 C

@ A

0.199

vlanguage = B
0.762

C

0
0.290

1

B - 0.441C

@
0.982

A

Neural networks in NLP
Feed-forward NNs

Recurrent NNs

Convolutional NNs Transformer

Neural networks for NLP: History

NN “dark ages”

•

•

Slide credit: Greg Durrett

ConvNets: applied to MNIST by LeCun in 1998

• Long Short-term Memory Networks (LSTMs): Hochreiter

and Schmidhuber 1997

• Henderson 2003: neural shift-reduce parser, not SOTA

Neural network algorithms date from the 80s

2008-2013:A glimmer of light

• Collobert and Weston 2011: “NLP (almost) from

Scratch”

•
•

Feedforward NNs can replace “feature engineering”

2008 version was marred by bad experiments,

claimed SOTA but wasn’t, 2011 version tied SOTA

• Krizhevskey et al, 2012: AlexNet for ImageNet Classification

• Socher 2011-2014: tree-structured RNNs working okay

Slide credit: Greg Durrett

Slide credit: Greg Durrett

2014: Stuff starts working
• Kim (2014) + Kalchbrenner et al, 2014: sentence classification

• ConvNets work for NLP!

• Sutskever et al, 2014: sequence-to-sequence for neural MT

• LSTMs work for NLP!

• Chen and Manning 2014: dependency parsing

• Even feedforward networks work well for NLP!

•

•

•

2015: explosion of neural networks for everything under the sun

2018-2019: NLP has entered the era of pre-trained models (ELMo, GPT, BERT)

2020+: the emergency of large language models (GPT-3, ChatGPT)

Slide credit: Greg Durrett

Why didn’t they work before?

• Datasets too small: for machine translation, not really better until you have

1M+ parallel sentences (and really need a lot more)

• Optimization not well understood: good initialization, per-feature scaling +

momentum (Adagrad/Adam) work best out-of-the-box

•
•

Regularization: dropout is pretty helpful

Computers not big enough: can’t run for enough iterations

• Inputs: need word embeddings to represent continuous semantics

The “promise” of deep learning

• Most NLP works in the past focused on human-designed representations and input

features

• Representation learning attempts to automatically

learn good features and representations

• Deep learning attempts to learn multiple levels of

representations on increasing complexity/abstraction

Review: Feedforward neural networks

Feed-forward NNs

•
•
•

The units are connected with no cycles

The outputs from units in each layer are passed to units in the next higher layer

No outputs are passed back to lower layers

Fully-connected (FC) layers:

All the units from one layer

are fully connected to

every unit of the next layer.

Feed-forward NNs

x1

x2

x3

h(1)
1

o
h(1)

2

h(1)
3

h(1)
4

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(1)
1

= f(w(1)
1,1
x1 + w(1)

1,2
x2 + w (1)

1,3
x3)

non-linearity f: , tanh or ReLU.

h(2)
3

= f(w(2)
3,1 1 3,2 2
h + w h + w(1) (2) (1) (2)

3,3 3
h + w(1) (2) (1)

3,4 4
h)

x1

x2

x3

x4

x5

σ(w · x)

w1

w2

w3

w4

w5

non-linear activationLinear (dot product)

Activation functions

f (z) =
1

1+ e z

sigmoid

f 0(z) = f (z)⇥(1 - f (z))

tanh

f (z) = 1 - f (z)0 2

f (z) =
e2z 1

e2z + 1
f (z) = max(0,z)

ReLU

(rectified linear unit)

f 0(z) =
(
1 z > 0

0 z < 0

Matrix notations

•

•

Input layer:

Hidden layer 1:

h1 = f (W (1)x + b(1)) 2 Rd1

W(1) 2 Rd1⇥d,b(1) 2 Rd1

Hidden layer 2:

h2 = f (W (2)h1 + b(2)) 2 Rd2

W(2) 2 Rd2⇥d1 ,b(2) 2 Rd2

Output layer:

•

*: f is applied element-wise

f ([z1,z2,z3]) = [f (z1),f (z2),f (z3)]

C: number of classes

d: input dimension, d1, d2: hidden dimensions

x 2 Rd

•

y =W (o)h2,W (o) 2 RC⇥d2

Feedforward NNs

For x1 = x2 = x3 = 1, what is the value of h(1)?
1

(a) 0 (b) -1 (c) 1 (d) 2

Correct: (a), because of the RELU:

max(2 x 1 + (-3) x 1 + 0 x 1, 0) = max(-1, 0) = 0

ReLU ReLUx1

x2

x3

h(1)
1

h(1)
2

h(2)
1

h(2)
2

2

-1

-3

1

0

2

1

2

2

-2

-1

2

(Bias terms omitted in

the next few slides)

Feedforward NNs for multi-class classification

y =W(o)h2,W(o) 2 RC⇥d2

ŷ = softmax(y) softmax(y)k =
exp(yk)

∑
j=1

exp(yj)
C y = [y1, y2, …, yC]

Training loss:

min −

W(1), W(2), W(o)

∑
(x,y)∈D

log ŷy

h(1) = ReLU(W(1)x)

h(2) = ReLU(W(2)h(1))

ŷ = softmax(W(o)h(2))

Training feedforward NNs:

stochastic gradient descent!
Neural networks are difficult to optimize.

SGD can only converge to local minimum.

Initializations and optimizers matter a lot!

Back-propagation

Forward step 1:

Compute h(1), h(1)

1 2

y1

y2

y3

ReLU ReLU
x1

x2

x3

h(1)
1

h
(1)

2

h(2)
1

h(2)
2

Forward propagation:

from input to output layer Forward step 2:
Compute h(2), h(2)

1 2
Forward step 3:

Compute y1, y2, y3 and

[y1̂, y2̂, y3̂] = softmax[y1, y2, y3]

Forward step 4:

Compute loss

L = − log ŷy

Back propagation:

from output to input layer

Back step 1:

Compute
∂L ∂L ∂L

∂y1 ∂y2 ∂y3
, ,

Back step 2:

Compute
∂L ∂L ∂L

, ,
∂h(2) ∂h (2)

1 2 ∂W(o)

Back step 3:

Compute
∂L ∂L ∂L

∂h(1) ∂h (1)
1 2

, ,
∂W(2)

L

Goal:

,

,

∂L

∂W(1)

∂L

∂W(2)

∂L

∂W(o)

Given: x1, x2, x3

and the class
label y

(a single training
example)

Back step 4:

Compute

∂L

∂W(1)

W(o)
W(2)W(1)

Back-propagation in PyTorch

PyTorch did back-propagation for you in this one line of code!

Comparison: image vs text inputs

label = “dog”

label = positive

a sometimes tedious film

i had to look away - this was god awful .

a gorgeous , witty , seductive movie .

• Images: fixed-size input, continuous values

• Text: variable-length input, discrete words

• need to convert into vectors - word embeddings!

Neural “bag-of-words” models for

text classification

Neural networks for text classification

•

•

Input: w1, w2, …,wK ∈V

Output: y ∈C

Solution #1: You can construct a feature vector from the input and simply feed the

vector to a neural network, instead of a logistic regression classifier!

• x = [x1, x2, …, xn]

• h = tanh(Wx + b)

• y = Uh

• ŷ = softmax(y)

Deep learning has the promise to learn good

features automatically..

•

•

Input: dessert was great

Output: positive C = {positive, negative, neutral}

Neural networks for text classification

•

pooling: sum, mean or max

How can we feed a variable-length input to a neural network classifier? w1,w2, …,wK ∈V

Solution #2: Let’s take the all the word embeddings of these words and aggregate them

into a vector through some pooling function!
K

xmean = K ∑ e(wi)
1

i=1

• x =
K ∑ e(wi)

i=1

• h = tanh(Wx + b)

• y = Uh

• ŷ = softmax(y)

1
K

Neural networks for text classification

•

•
(+): This provides a simple and flexible way to handle variable-length input

(+): It learns feature representations automatically from the data
• (+): It can generalize to similar inputs through word embeddings

• (-): The model throws away any sequential information of the text

I love this movie! It's sweet,

but with satirical humor. The

dialogue is great and the

adventure scenes are fun...

It manages to be whimsical

and romantic while laughing

at the conventions of the

fairy tale genre. I would

recommend it to just about

anyone. I've seen it several

times, and I'm always happy

to see it again whenever I

have a friend who hasn't

seen it yet!

15

it 6

I 5

the 4

to 3

and 3

seen 2

yet 1

would 1

whimsical 1

times 1

sweet 1

satirical 1

adventure 1

genre 1

fairy 1

humor 1

have 1

great 1

… …

fairy

it

and

it

loveto
it

whimsical it

it
several

it

I

I

I

I

seen
to scenes I

recommend

satirical
movie

the manages

the

the timesand

the humor

to

and

seen

yet

would

conventions
with

who

whilewhenever

adventure
sweet

but romantic

of

have

happy

fun

friend dialogue

are
anyone

always

again

about

neural bag-of-words model (NBOW)

How to train this model?

• x =
K ∑ e(wi)

i=1

• h = tanh(Wx + b)

• y = Uh

• ŷ = softmax(y)

1
K

• Training data: {(d(1), y(1)), …, (d(m), y(m))}

• Parameters: {W, b, U}

• Optimize these parameters using gradient descent!

• Word embeddings can be treated as parameters too!

E ∈ℝ|V|×d

How to train this model?

• Common practice: initialize E using word embeddings

(e.g. word2vec), and optimize them using SGD! Why? v(good) ≈ v(bad)

• When the training data is small, don’t treat

E as parameters!

• When the training data is very large (e.g., language

modeling), initialization doesn’t matter much either

(= can use random initialization)

(Kim 2014)

Deep Averaging Networks (DAN)

(Iyyer et al., 2015)

Basically the same as NBOW

but neural network is deeper!

f: non-linearity

Feedforward neural language models

N-gram vs neural language models

Language models: Given x1, x2, …, xn ∈V, the goal is to model:

n

P(x1, x2, …, xn) = ∏ P(xi ∣ x1, …, xi−1)

i=1

Bigram:

Trigram:

P(x1, x2, …, xn) = ∏ P(xi ∣ xi−1)
n

i=1
n

P(x1, x2, …, xn) = ∏ P(xi ∣ xi−2, xi−1)

i=1

P(sat|the cat) =
count(the cat sat)

count(the cat)

Maximum likelihood estimate:

Limitations? Can’t handle long histories!

As the proctor started the clock, the students opened their

The keys to the cabinet is/are

N-gram vs neural language models

• If we use a 4-gram, 5-gram, 6-gram language model, it will become too sparse to

estimate the probabilities:

P (w | students opened their) =
count(students opened their w)

count(students opened their)

Dilemma:

• We need to model bigger context!

• The # of probabilities that we need

to estimate grow exponentially with

window size!

• A lot of contexts are similar and simply

counting them won’t generalize

I am a good

I am a great

e(good) e(great)

count(I am a good w)

count(I am a great w)

Can we estimate the probabilities better?

(Bengio et al., 2003)

https://awards.acm.org/about/2018-turing

Feedforward neural language models

Feedforward neural language models

(Bengio et al., 2003)

Key idea: Instead of estimating raw probabilities, let’s use a

neural network to fit the probabilistic distribution of language!

P(w ∣ I am a good)

P(w ∣ I am a great)

e(good) e(great)Key ingredient: word embeddings

Hope: this would give us similar distributions for similar contexts!

the

cat

sat

on

the

P (w = i)?

R5d Rh

Rd

Feedforward neural language models

P(mat | the cat sat on the) = ?

• Feedforward neural language models approximate the probability based

on the previous m (e.g., 5) words - m is a hyper-parameter!
n

P(x1, x2, …, xn) ≈∏ P(xi ∣ xi−m+1, …, xi−1)

i=1

d: word embedding size

h: hidden size

It is a |V|-way classification problem!

the

cat

sat

on

the

R5d Rh

P (w = i)?

Rd

Feedforward neural language models

P(mat | the cat sat on the) = ? d: word embedding size h: hidden size

•

Hidden layer:

h = tanh(Wx + b) ∈ℝh

Output layer

z = Uh 2 R|V |

P (w = i | the cat sat on the)

e
z i

= softmaxi (z) = P

k e
zk

• Input layer (m= 5):

x = [e(the); e(cat); e(sat); e(on); e(the)] ∈ℝmd

•

What are the dimensions of W and U?

d: word embedding size, h: hidden size

(a) W ∈ℝh×d,U ∈ℝ|V|×h

(b) W ∈ℝh×5d,U ∈ℝ|V|×h

(c) W ∈ℝh×5d,U ∈ℝ|V|×d

(d) W ∈ℝh×d,U ∈ℝd×h

Correct: (b)

Feedforward neural language models

• How to train this model? A: Use a lot of raw text to create training

examples and run gradient-descent optimization!

the fat cat sat on the

fat cat sat on the mat

cat sat on the mat is

• Limitations?

• W linearly scales with the context size m

• The models learns separate patterns

for different positions!

• Better solutions: recurrent NNs, Transformers..

The Fat Cat Sat on the Mat is a 1996

children's book by Nurit Karlin. Published by

Harper Collins as part of the reading

readiness program, the book stresses the

ability to read words of specific structure,

such as -at.

the fat cat sat on the

fat cat sat on the mat

cat sat on the mat is

sat on the mat is a

…

“sat on” corresponds to

different parameters in W

Convolutional NNs for text classification

Convolutional NNs in image classification

Key components: 1) convolution; 2) pooling; 3) multiple channels (feature maps)

Convolutional NNs for text classification

(Kim 2014): Convolutional Neural Networks for Sentence Classification

