

AIE1007: Natural Language Processing

L7: Sequence Models - 2

Autumn 2024

Recap: Hidden Markov models

- 1. Set of states S = {1, 2, ..., K} and set of observations $O = \{O_1, \ldots, O_n\}$
- **2. Initial state probability distribution** *π*(*s*¹)
- **3. Transition probabilities** $P(s_{t+1} | s_t)$
- **4. Emission probabilities** *P*(*o^t* |*st*)

Strong assumptions

1. **Markov assumption**:

$$
P(s_{t+1} | s_1, \ldots, s_t) \approx P(s_{t+1} | s_t)
$$

)

2. **Output independence**:

$$
P(o_t | s_1, \ldots, s_t) \approx P(o_t | s_t)
$$

Recap: Hidden Markov models

1) assumes (**s)**tate sequences do not have very strong priors/longrange dependencies

2) assumes neighboring (**s)**tates don't affect current (**o)**bservation

 $M[i, j] = \max M[i - 1, k]$ $P(s_j | s_k)$ $P(o_i | s_j)$ *k Backward:* Pick max *M*[*n*, *k*] and backtrack using *B k*

M[*i*, *j*] stores joint probability of most probable sequence of states ending with state *j* at time *i*

$1 \leq k \leq K$ $1 \leq i \leq n$

Trigram hidden Markov models

Can add smoothing techniques to avoid zero probabilities!

Time complexity: *O*(*nK*³)

 $P(s_i | s_{i-1}, s_{i-2}) =$ $Count(s_i, s_{i-1}, s_{i-2})$ $Count(s_{i-1}, s_{i-2})$ MLE estimate:

 $M[i, j, k] = \max M[i - 1, k, r]$ $P(s_j | s_k, s_r)$ $P(o_i | s_j)$ *r* Viterbi: $M[i, j, k] = \max M[i - 1, k, r] P(s_i | s_k, s_r) P(o_i | s_j)$ $1 \le j, k, r \le K$ $1 \le i \le n$

What we have seen so far is also called bigram HMM Can be extended to trigram, 4-gram etc.

most probable sequence of states ending with state *j* at time *i*, and state *k* at *i-1*

Maximum Entropy Markov Models (MEMMs)

ICML 2000

Maximum Entropy Markov Models for Information Extraction and Segmentation

Andrew McCallum Dayne Freitag Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

Fernando Pereira AT&T Labs - Research, 180 Park Ave, Florham Park, NJ 07932 USA MCCALLUM@JUSTRESEARCH.COM DAYNE@JUSTRESEARCH.COM

PEREIRA@RESEARCH.ATT.COM

Generative vs discriminative models

- HMM is a *generative* model
- Can we model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly?

Naive Bayes: $P(c)P(d|c)$

Logistic Regression: $P(c | d)$

Text classification

Generative Discriminative

MEMM: $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$

HMM: $P(s_1, \ldots, s_n) P(o_1, \ldots, o_n | s_1, \ldots, s_n)$ **Sequence** prediction

Maximum entropy Markov model (MEMM)

$$
O = \langle o_1, o_2, \ldots, o_n \rangle
$$

$$
P(S | O) = \prod_{i=1}^{n} P(s_i | s_{i-1}, s_{i-2}, ...)
$$

=
$$
\prod_{i=1}^{n} P(s_i | s_{i-1}, O)
$$

$$
P(s_i = s \mid s_{i-1}, O) \propto \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))
$$

weights
featu

 $, \, ... ,s_{1} ,O)$

Markov assumption: Bigram MEMM

Important: you can define features over entire word sequence *O*!

Use features and weights: $P(s_i = s | s_{i-1}, 0) \propto \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, 0, i))$

• *Which of the following is the correct way to calculate this probability?* A) $P(s_i = s | s_{i-1}, 0) =$ B) $P(s_i = s | s_{i-1}, 0) =$ $C) P(s_i = s | s_{i-1}, 0) =$ $\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))$ ∑ *K* $S_{i-1}^K \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1} = s', 0, i))$ $\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))$ ∑ *K* $s' = 1$ $\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, O, i))$ $\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))$ $\sum_{i} \sum_{j} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O', i))$

The answer is (B)

$$
O = \langle o_1, o_2, \ldots, o_n \rangle
$$

Maximum entropy Markov model (MEMM)

exp(**w** ⋅ **f**(*sⁱ* = *s*, *si*−¹

, *O*, *i*))

• Can be easily extended to trigram MEMM, 4-gram MEMM..

$$
P(s_i = s \mid s_{i-1}, s_{i-2}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, s_{i-2}, O, i))}{\sum_{s'=1}^{K} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, s_{i-2}, O, i))}
$$

• Bigram MEMM:

How to define features?

Feature templates

- t_i = VB and w_{i-2} = Janet
- t_i = VB and w_{i-1} = will
- t_i = VB and w_i = back
- t_i = VB and w_{i+1} = the
- t_i = VB and w_{i+2} = bill
- t_i = VB and t_{i-1} = MD
- t_i = VB and t_{i-1} = MD and t_{i-2} = NNP
- t_i = VB and w_i = back and w_{i+1} = the

Features (binary)

$$
\mathbf{f}(s_i = s', s_{i-1}, s_{i-2}, O, i)
$$

 t_i = tags (states) w_i = words (observations)

$$
\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle
$$

$$
\langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle,
$$

$$
\langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle, \langle t_i, w_i, w_{i+1} \rangle,
$$

Features in an MEMM

Which of these feature templates would help most to tag 'old' correctly?

A)
$$
\langle t_i, t_{i-1}, w_i, w_{i-1}, w_{i+1} \rangle
$$

\nB) $\langle t_i, t_{i-1}, w_i, w_{i-1} \rangle$
\nC) $\langle t_i, w_i, w_{i-1}, w_{i+1} \rangle$
\nD) $\langle t_i, w_i, w_{i-1}, w_{i+1}, w_{i+2} \rangle$

-
-
-
-
-

 t_i = tags (states) w_i = words (observations)

The answer is (D)

MEMMs: Decoding

• Bigram MEMM:

MEMMs: Decoding

• Bigram MEMM:

 $\hat{s_2}$ = arg max $P(s_i = s \mid \textsf{DT}, O)$ = NN *s*

MEMMs: Decoding

• Bigram MEMM:

Viterbi decoding for MEMMs

M[*i*, *j*] stores joint probability of most probable sequence of states ending with state j at time i

Pick max *M*[*n*, *k*] and backtrack using *B Backward: k*

$$
M[i,j] = \max_{k} M[i-1,k] \frac{P(s_i = j | s_{i-1} = k, O)}{1 \le k \le K} \quad 1 \le i \le n
$$

MEMM: Decoding

How would you compare the computational complexity of Viterbi decoding for bigram MEMMs compared to decoding for bigram HMMs?

- A) More operations in MEMM
- B) More operations in HMM
- C) Equal

D) Depends on number of features in MEMM

$$
\begin{array}{lll}\n\text{MEM:} & M[i,j] = \max_{k} M[i-1,k] \frac{P(s_i = j \mid s_{i-1} = k, O)}{1 \le k \le K} \quad 1 \le i \le n \\
\text{HMM:} & M[i,j] = \max_{k} M[i-1,k] \quad P(s_j \mid s_k) \quad P(o_i \mid s_j) \quad 1 \le k \le K \quad 1 \le i \le n\n\end{array}
$$

The answer is (D)

MEMM: Learning

• **Gradient descent:** similar to logistic regression!

$$
P(s_i = s | s_{i-1}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))}{\sum_{s'} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, O, i))}
$$

• Given: annotated pairs of (S, O) where

• Compute gradients with respect to weights and update

each
$$
S = \langle s_1, s_2, \dots, s_n \rangle
$$

Loss for one sequence,
$$
L = -\sum_{i=1}^{n} \log P(s_i | s_{i-1}, 0)
$$

MEMM vs HMM

- HMM models the joint *P*(*S*, *O*) while MEMM models the required prediction *P*(*S*|*O*)
- MEMM has more expressivity
	- accounts for dependencies between neighboring states and **entire observation** sequence
	- allows for **more flexible features**
- HMM may hold an advantage if the dataset is small

Conditional Random Fields (CRFs)

ICML 2001

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

John Lafferty^{†*} Andrew McCallum^{*†} Fernando Pereira^{*†}

*WhizBang! Labs-Research, 4616 Henry Street, Pittsburgh, PA 15213 USA [†]School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA [‡]Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

LAFFERTY@CS.CMU.EDU MCCALLUM@WHIZBANG.COM FPEREIRA@WHIZBANG.COM

Conditional Random Field

- Model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly
- No Markov assumption
	- Map entire sequence of states S and observations O to a **global** feature vector
- Normalize over entire sequences

Features

- DT)——(NN)——(VB)——[|N The cat sat i on
- - $P(S|O)$

• Each *F^k* in **f** is a **global** feature function

-
- exp(**w** ⋅ **f**(*S*, *O*)) $P(S | O) =$ $\sum_{S'} \exp(\mathbf{w} \cdot \mathbf{f}(S', O))$ features
- $\mathbb{1}\{x_i = the, y_i = \text{DET}\}\$ $\mathbb{1}\{y_i = \text{PROPN}, x_{i+1} = \text{Street}, y_{i-1} = \text{NUM}\}\$ $\mathbb{1}{y_i}$ = VERB, y_{i-1} = AUX}
-

$$
D) = \frac{\exp(\sum_{k=1}^{m} w_k \cdot F_k(S, O))}{\sum_{S'} \exp(\sum_{k=1}^{m} w_k \cdot F_k(S', O))}
$$

• Can be computed as a combination of local

n

• Each local feature only depends on previous and current states

$$
F_k = \sum_{i=1}^n f_k(s_{i-1}, s_i, O, i)
$$

CRF: Decoding

• Use Viterbi similar to HMM and MEMM

 $=$ arg max exp($\mathbf{w} \cdot \mathbf{f}(S, O)$) *S*

exp(**w** ⋅ **f**(*S*, *O*)) *Z*(*O*)

m n $=$ arg max \sum_{S} $\sum_{i=1}^{N_k} f_k(s_{i-1}, s_i, O, i)$ *S k*=1 *i*=1

CRF: Learning

$$
P(S|O) = \frac{\exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i))}{Z(O)}
$$

=
$$
\frac{\exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i))}{\sum_{s'_1, \dots, s'_n} \exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s'_{i-1}, s'_i, O, i))}
$$

$$
- \log P(S \mid O) = - \sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i)) + \log \sum_{s'_1, \dots, s'_n} \exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s'_{i-1}, s'_i, O, i))
$$

− ∂log *P*(*S* ∣ *O*) ∂*w^k* can be done efficiently using dynamic programming

Log-Linear Models, MEMMs, and CRFs

Michael Collins

CRF vs MEMM

- MEMM models the required prediction *P*(*S*|*O*) using the Markov assumption, while the CRF does not
- CRF uses global features while MEMM features are localized
- Feature design is flexible in both models
- CRF is computationally more complex

History of CRFs

- Very popular in the 2000s
- Wide variety of applications:
	- Information extraction
	- Summarization
	- Image labeling/segmentation

Publisher: IEEE

Xuming He; R.S. Zemel; M.A. Carreira-Perpinan All Authors

Information extraction from research papers using conditional random fields *

Fuchun Peng^a & \boxtimes , Andrew McCallum $b \boxtimes$

Multiscale conditional random fields for image labeling

Cite This

 \mathbb{A} PDF

Document Summarization using Conditional Random Fields

Dou Shen¹, Jian-Tao Sun², Hua Li², Qiang Yang¹, Zheng Chen² ¹Department of Computer Science and Engineering Hong Kong University of Science and Technology, Hong Kong {dshen, qyang}@cse.ust.hk ²Microsoft Research Asia, 49 Zhichun Road, China {jtsun, huli, zhengc}@microsoft.com

History of CRFs

Software [edit]

This is a partial list of software that implement generic CRF tools.

- RNNSharp& CRFs based on recurrent neural networks (C#, .NET)
- CRF-ADF & Linear-chain CRFs with fast online ADF training (C#, .NET)
- CRFSharp & Linear-chain CRFs (C#, .NET)
- $GCO \& CRFs$ with submodular energy functions $(C++$, Matlab)
- DGM& General CRFs (C++)
- GRMM & General CRFs (Java)
-
- CRFall& General CRFs (Matlab)
- Sarawagi's CRF& Linear-chain CRFs (Java)
- HCRF library & Hidden-state CRFs (C++, Matlab)
- Accord.NET & Linear-chain CRF, HCRF and HMMs (C#, .NET)
- Wapiti& Fast linear-chain CRFs (C)^[15]
- CRFSuite & Fast restricted linear-chain CRFs (C)
- CRF++ & Linear-chain CRFs (C++)
- FlexCRFs & First-order and second-order Markov CRFs (C++)
- crf-chain1 & First-order, linear-chain CRFs (Haskell)
- imageCRF& CRF for segmenting images and image volumes $(C++)$
- MALLET & Linear-chain for sequence tagging (Java)
- Very popular in the 2000s
- Wide variety of applications:
	- Information extraction
	- **Summarization**
	- Image labeling/segmentation

• factorier General CRFs (Scala)

CRFs in deep learning era

Conditional Random Fields as Recurrent **Neural Networks**

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr, Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1529-1537

Neural Architectures for Named Entity Recognition

Guillaume Lample⁴ Miguel Ballesteros⁴⁴ Sandeep Subramanian^{*} Kazuya Kawakami* Chris Dyer* *Carnegie Mellon University *NLP Group, Pompeu Fabra University {glample, sandeeps, kkawakam, cdyer}@cs.cmu.edu, miguel.ballesteros@upf.edu

Bidirectional LSTM-CRF Models for Sequence Tagging

Wei Xu **Zhiheng Huang** Baidu research Baidu research huangzhiheng@baidu.com xuwei06@baidu.com

Kai Yu Baidu research yukai@baidu.com

- Use CRFs on top of neural representations (instead of features and weights)
- Joint sequence prediction without the need for defining features!
- Recent architectures such as seq2seq w/ attention or Transformer may implicitly do the job

Named entity recognition (NER)

Named entity recognition

Named entities

- Named entity, in its core usage, means anything that can be referred to with a proper name.
- NER is the task of 1) finding spans of text that constitute proper names; 2) tagging the type of the entity
- Most common 4 tags:
	- **PER** (Person): "Marie Curie"
	- **LOC** (Location): "New York City"
	- **ORG** (Organization): "Princeton University"
	- **MISC** (Miscellaneous): nationality, events, ..

Only France and Britain backed Fischler 's proposal . O LOC O LOC O PER O O O

Steve Jobs founded Apple with Steve Wozniak . PER PER O ORG O PER PER .

 $O = not$ an entity

If multiple words constitute a named entity, they will be labeled with the same tag.

NER: BIO Tagging

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

- B: token that begins a span
- I: tokens that inside a span
- O: tokens outside of a span