
AIE1007: Natural Language Processing

L6:Sequence Models

Autumn 2024

Why model sequences?

PRP: Personal pronoun

VBZ: Verb, 3rd person

singular present

NN: singular noun

NNS: plural noun

IN: preposition or

subordinating

conjunction
DT: determiner

Part-of-speech (POS) tagging

Named Entity recognition

Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/

Why model sequences?

http://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/
http://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/
http://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/

Why model sequences?

Semantic role labeling

https://devopedia.org/semantic-role-labelling

NLP pipelines

https://spacy.io/usage/processing-pipelines https://stanfordnlp.github.io/CoreNLP/pipeline.html

What are part of speech tags?

• Word classes or syntactic categories

• Reveal useful information about a

word (and its neighbors!)

1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN

2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP

3. The/DT old/NN man/VBP the/DT boat/NN

Parts of Speech

• Different words have different functions

• Can be roughly divided into two classes

• Closed class: fixed membership, function words

• e.g. prepositions (in, on, of), determiners (the, a)

• Open class: New words get added frequently

• e.g. nouns (Twitter, Facebook), verbs (google),

adjectives, adverbs

Parts of Speech

How many part of speech tags do you think English has?

A) < 10

B) 10 - 20

C) 20 - 40

D) > 40

The answer is (D) - well,

depends on definitions!

Penn treebank part-of-speech tagset

45 tags

(Marcus et al., 1993)

based on Wall Street

Journal (WSJ)

Other corpora: Brown, Switchboard

Part of speech tagging

• Tag each word in a sentence with its part of speech

• Disambiguation task: each word might have different functions in different contexts

• The/DT man/NN bought/VBD a/DT boat/NN

• The/DT old/NN man/VBP the/DT boat/NN

Same word,

different tags

Some words have

many functions!

JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present

VB: Verb, base form, RP: particle, RB: adverb

Part of speech tagging

Unambiguous types:

Jane NNP,

hesitantly RB

• Types = distinct words in the corpus

• Tokens = all words in the corpus (can be repeated)

• Tag each word in a sentence with its part of speech

• Disambiguation task: each word might have different senses/functions

A simple baseline

• Many words might be easy to tag

• Most frequent class: Assign each word to the class it occurred

most in the training set. (e.g. man/NN)

How accurate do you think this baseline would

be at tagging words?

A) <50%

B) 50-75%

C) 75-90%

D) >90% The answer is (D)

A simple baseline

• Many words might be easy to tag

• Most frequent class: Assign each word to the class it occurred

most in the training set. (e.g. man/NN)

• Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)!

• State of the art ~ 97%

• Average English sentence ~14 words

• Sentence level accuracies: 0.9214 = 31% vs 0.9714 = 65%

• POS tagging not solved yet!

Some observations

• The function (or POS) of a word depends on its context

• The/DT old/JJ man/NN bought/VBP the/DT boat/NN

• The/DT old/NN man/VBP the/DT boat/NN

• Certain POS combinations are extremely unlikely

• <JJ, DT> (“good the”) or <DT, IN> (“the in”)

• Better to make decisions on entire sentences instead of individual words

Hidden Markov Models

Markov chains

p(st ∣ st−1): transition probability

• Model probabilities of sequences of variables

• Each state can take one of K values (can assume {1, 2, ..., K} for simplicity)

• Markov assumption: P(st|s1, s2, …, st−1) ≈P(st|st−1)

• A Markov chain is specified by

• Initial probability distribution π(s),∀s ∈ {1,…, K}

Transition probability matrix (K×K)•

π(s1): initial distribution

s1 s2 s3 s4

Where have we seen this before?

N-gram language models!

Markov chains

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

Markov chains can help us model entire sentences.

s1 s2 s3 s4

s1 s2 s3 s4

The/?? cat/?? sat/?? on/?? the/?? mat/??

BUT we don’t normally see sequences of POS tags appearing in text

Hidden Markov Model (HMM)

• We don’t normally see sequences of POS tags in text

• However, we do observe the words!

• The HMM allows us to jointly reason over both hidden and observed events.

• Assume that each position has a tag that generates a word

s1 s2 s3 s4

the cat sat on

Tags

(hidden events)

Words

(observed events)

Components of an HMM

1. Set of states S = {1, 2, ..., K} and set of observations O = {o1,…, on}

2. Initial state probability distribution π(s1)

3. Transition probabilities P(st+1 |st)

4. Emission probabilities P(ot|st)

s1 s2 s3 s4

the cat sat onWords

Tags

oi ∈V

Assumptions

1. Markov assumption:

P(st|s1, . . . , st−1) ≈P(st|st−1)

2. Output independence:

P(ot|s1, . . . , st) ≈P(ot|st)

s1 s2 s3 s4

the cat sat onWords

Tags

If we add a dummy state s0 = ∅at the beginning,

n

P(S,O) = ∏ P(si ∣ si−1)P(oi ∣ si)

i=1

[π(s1) = P(s1 ∣∅)]

Sequence likelihood

s1 s2 s3 s4

the cat sat onWords

Tags

P(S,O) = P(s1, s2, …, sn, o1, o2, …, on)
n

= π(s1)p(o1 ∣ s1)∏ P(si ∣ si−1)P(oi ∣ si)

i=2
transition

probability

emission

probability

Example: Sequence likelihood

What is the joint probability

P(the cat, DT NN)?

A) (0.8 * 0.8) * (0.9 * 0.5)

B) (0.2 * 0.8) * (0.9 * 0.5)

C) (0.3 * 0.7) * (0.5 * 0.5)

D) (0.8 * 0.2) * (0.5 * 0.1)

Dummy start state

st+1

st

ot

s1 s2 s3 s4

the cat sat on
Words

Tags

st

The answer is (A).

DT NN

∅ 0.8 0.2

DT 0.2 0.8

NN 0.3 0.7

the cat

DT 0.9 0.1

NN 0.5 0.5

Learning

Maximum likelihood estimates:

P(si|sj) =
Count(sj, si)

Count(s)j

Count(s, o)
P(o|s) =

Count(s)

Q: How many probabilities to estimate?

A: transition probabilities - (K + 1) K

emission probabilities - |V|×K

Learning example

3. The/DT old/NN man/VBP the/DT boat/NN

1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN

2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP

Maximum likelihood estimates:

P(si|sj) =
Count(sj, si)

Count(sj)

Count(s, o)P(o|s) =
Count(s)

π(DT) = P(DT ∣∅) = 2/3

P(NN |DT) = 4/4 P(DT |IN) =

P(cat |NN) = 1/4 P(the |DT) =

1/2

2/4
(assuming we

differentiate cased

vs uncased words)

Decoding with HMMs

Task: Find the most probable sequence of states S = s1, s2, . . . , sn given the

observations O = o1, o2, . . . , on

s1 s2 s3 s4

the cat sat on
Words

Tags

S ̂ = arg max P(S ∣O) = arg max
P(O ∣ S)P(S)

S S P(O)
[Bayes’ Rule]

= arg max P(O ∣ S)P(S)
S

= arg max ∏ P(si ∣ si−1)P(oi ∣ si)
s1,…,sn

n

i=1

How can we maximize this?

Search over all state sequences?

Greedy search

• Decode one state at at time

DT ? ? ?

The cat sat on

Decoded tag

arg max π(s1 = s)p(The ∣ s) = DT
s

Greedy search

• Decode one state at at time

DT NN ? ?

The cat sat on

Decoded tag

arg max p(s ∣DT)p(cat ∣ s) = NN
s

Greedy search

• Decode one state at at time

DT NN VBD IN

The cat sat on

Decoded tag

st̂ = arg max p(s ∣ st̂−1)p(ot ∣ s)
s

Very efficient but it doesn’t guarantee to produce the overall optimal sequence

Viterbi decoding

• Use dynamic programming!

• Maintain some extra data structures

• Probability lattice, M[T, K] and backtracking matrix, B[T, K]

•

•

• M[i, j] stores joint probability of most probable sequence of states ending with state

j at time i,

• B[i, j] is the tag at time i-1 in the most probable sequence ending with tag j at time i

T : Number of time steps

K : Number of states

Viterbi decoding

DT

NN

VBD

IN

the

M[1,DT] = π(DT) P(the |DT)

M[1,NN] = π(NN) P(the |NN)

M[1,VBD] = π(VBD) P(the |VBD)

M[1,IN] = π(IN) P(the |IN)

4 possible POS tags Initialize the table

Forward

Viterbi decoding

DT

NN

VBD

IN

catthe

DT

NN

VBD

IN

M[2,DT] = maxM[1,k] P(DT |k) P(cat |DT)
k

M[2,NN] = maxM[1,k] P(NN |k) P(cat |NN)
k

M[2,VBD] = max M[1,k] P(VBD |k) P(cat |VBD)
k

M[2,IN] = maxM[1,k] P(IN |k) P(cat |IN)
k

Consider all possible

previous tags

Forward

Viterbi decoding

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

M[i, j] = maxM[i−1,k] P(sj |sk) P(oi |sj)
k

1 ≤ k ≤K 1 ≤ i ≤ n

What is the time complexity

of this algorithm?

A) O(n)

B) O(nK)

C) O(nK2)

D) O(n2K)

n = number of timesteps

K = number of states

The answer is (C).

Viterbi decoding

PickmaxM[n, k] and backtrack using B
k

• In practice, we maximize sum of log

probabilities (or minimize the sum of negative

log probabilities) instead of maximize the

product of probabilities

Backward:

M[2,NN] = max{M[1,k] P(NN|k) P(cat |NN)}
k

M[2,NN] = max{M[1,k] + log P(NN|k) + log P(cat |NN)}
k

Beam search

If K (number of possible hidden states) is too large, Viterbi is too expensive!

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

Beam search

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

Observation: Many paths have very low likelihood!

0.0001 0.0001 0.0001

0.001

0.3 0.1

0.00001 0.01 0.01

• If K (number of possible hidden states) is too large, Viterbi is too expensive!

Beam search

VBD

IN

The

score = −0.7

score = −10.1

• Keep a fixed number of hypotheses at each point

• Beam width, β

log probabilities

DT score = −0.1

NN

β = 2

score = −9.8

Beam search

The cat

DT

NN

VBD

IN

Step 1: Expand all partial sequences in current beam

DT

NN

VBD

IN

β = 2

score = −16.5

score = −6.5

score = −3.0

score = −22.1

Accumulated scoresscore = −0.5

score = −13.5

score = −32.0

score = −20.3

• Keep a fixed number of hypotheses at each point

• Beam width, β

Beam search

The cat

DT

NN

VBD

IN

DT

NN

VBD

IN

β = 2

Step 2: Prune set back to top β sequences (sort and select)

Accumulated scores

… and Repeat!

score = −16.5

score = −6.5

score = −3.0

score = −22.1

score = −0.5

score = −13.5

score = −32.0

score = −20.3

• Keep a fixed number of hypotheses at each point

• Beam width, β

Beam search

The cat

DT

NN

VBD

IN

DT

NN

VBD

IN

β = 2

sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

PickmaxM[n, k] from within beam and backtrack
k

What is the time complexity

of this algorithm?

n = number of timesteps

K = number of states

β = beam width

A: O(nKβ)

• Keep a fixed number of hypotheses at each point

• Beam width, β

Beam Search

• If K (number of states) is too large, Viterbi is too expensive!

• Keep a fixed number of hypotheses at each point

• Beam width, β

• Trade-off (some) accuracy for computational savings

• Final remark: beam search is a common decoding method for any language

generation tasks (e.g., n-gram LMs, GPT-3)

Greedy: choose the most likely word!

To predict the next word given a context of two words w1,w2:

w3 = arg max P(w |w1, w2)
w∈V

