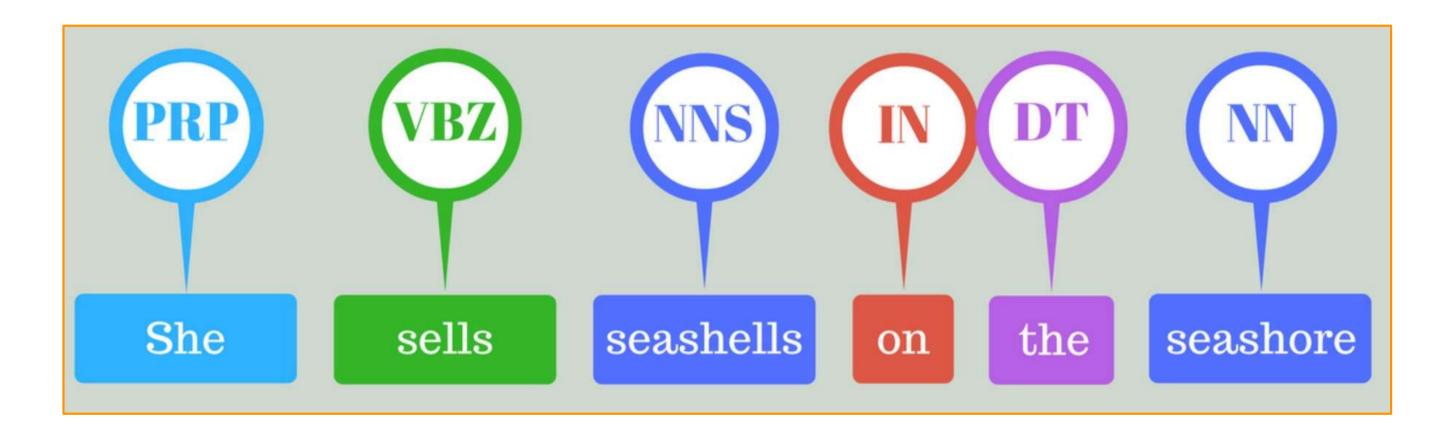


AIE1007: Natural Language Processing

L6:Sequence Models

Autumn 2024

Why model sequences?



Part-of-speech (POS) tagging

PRP: Personal pronoun VBZ: Verb, 3rd person singular present

NN: singular noun NNS: plural noun

IN: preposition or subordinating conjunction DT: determiner

Why model sequences?

Named Entity recognition

Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/

d Other z
×) is an American × attorney and
United States S from
ember of the Democratic Party × , he
dent. He was previously a
mber of the Illinois State Senate × .

Why model sequences?

Mary loaded the truck with hay at the depot on Friday.

load.01 A0 loader A1 bearer A2 cargo A3 instrument

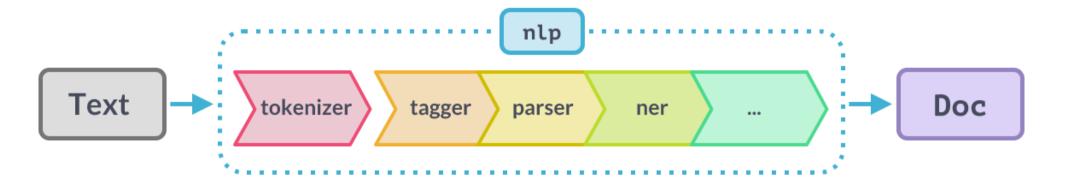
Mary loaded hay onto the truck at the depot on Friday.

Semantic role labeling

https://devopedia.org/semantic-role-labelling

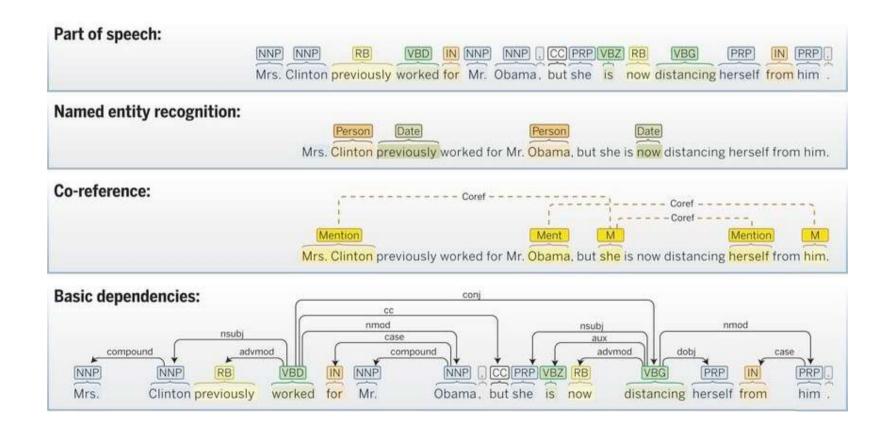
AM-LOC AM-TMP AM-PRP AM-MNR

NLP pipelines



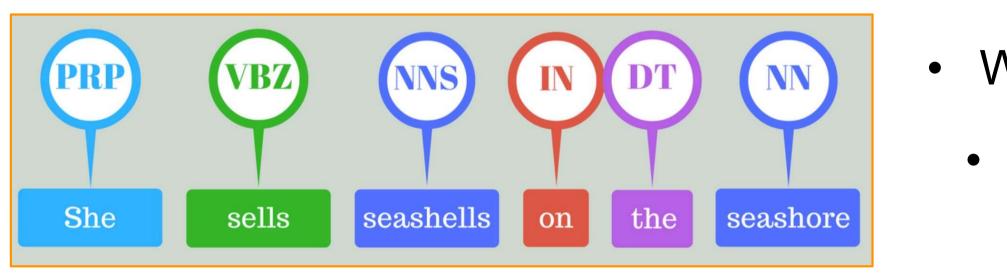
NAME	COMPONENT	CREATES	DESCRIPTION
tokenizer	Tokenizer 🚍	Doc	Segment text into tokens.
PROCESSING P	Tagger 🚍	Token.tag	Assign part-of- speech tags.
parser	DependencyParser ≡	Token.head, Token.dep, Doc.sents, Doc.noun_chunks	Assign dependency labels.
ner	EntityRecognizer =	Doc.ents, Token.ent_iob, Token.ent_type	Detect and label named entities.

https://spacy.io/usage/processing-pipelines



https://stanfordnlp.github.io/CoreNLP/pipeline.html

What are part of speech tags?



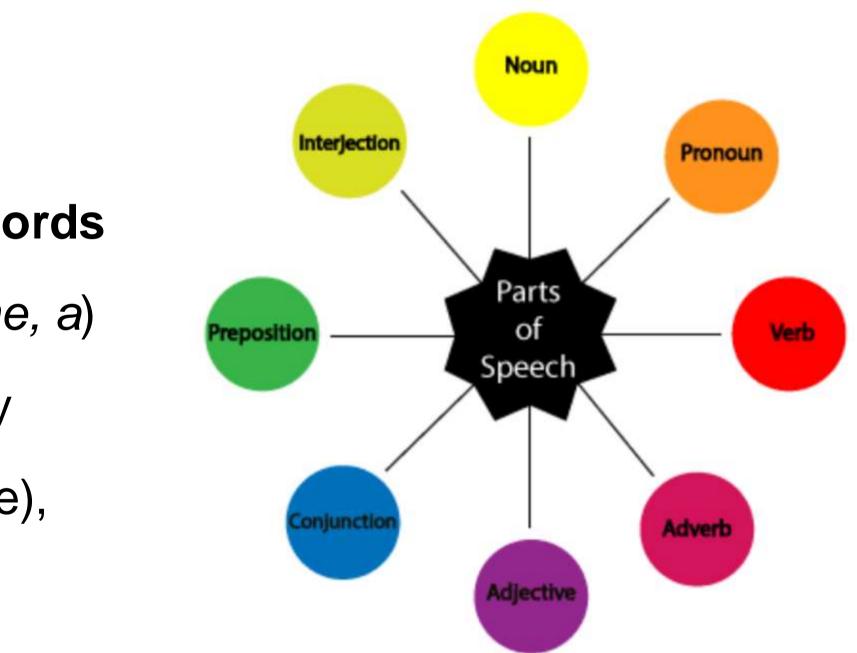
- 1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. The/DT old/NN man/VBP the/DT boat/NN

Word classes or syntactic categories

Reveal useful information about a word (and its neighbors!)

Parts of Speech

- Different words have different functions
- Can be roughly divided into two classes
- Closed class: fixed membership, function words
 - e.g. prepositions (*in, on, of*), determiners (*the, a*)
- Open class: New words get added frequently
 - e.g. nouns (Twitter, Facebook), verbs (google), adjectives, adverbs



Parts of Speech

How many part of speech tags do you think English has? A) < 10 B) 10 - 20 C) 20 - 40 D) > 40

The answer is (D) - well, depends on definitions!

Penn treebank part-of-speech tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	"	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	$[, (, \{, <$
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating	•	sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	:;

Other corpora: Brown, Switchboard

45 tags (*Marcus et al., 1993*)

based on Wall Street Journal (WSJ)

Part of speech tagging

- Tag each word in a sentence with its part of speech
- Disambiguation task: each word might have different functions in different contexts
 - The/DT man/NN bought/VBD a/DT boat/NN
 - The/DT old/NN man/VBP the/DT boat/NN ⁴

earnings growth took a **back/JJ** seat a small building in the **back/NN** a clear majority of senators **back/VBP** the bill Dave began to **back/VB** toward the door enable the country to buy **back/RP** about debt I was twenty-one **back/RB** then

JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present VB: Verb, base form, RP: particle, RB: adverb

Some words have many functions!

Part of speech tagging

- Tag each word in a sentence with its part of speech \bullet
- Disambiguation task: each word might have different senses/functions ullet

Types:		WSJ		Br
Unambiguous	(1 tag)	44,432	(86%)	45,799
Ambiguous	(2 + tags)	7,025	(14%)	8,050
Tokens:				
Unambiguous	(1 tag)	577,421	(45%)	384,349
Ambiguous	(2+ tags)	711,780	(55%)	786,640

- Types = distinct words in the corpus \bullet
- Tokens = all words in the corpus (can be repeated) ●

rown 9 (85%) 60 (15%) 9 (33%) 6 (67%)

Unambiguous types: NNP, Jane hesitantly RB

A simple baseline

- Many words might be easy to tag
- Most frequent class: Assign each word to the class it occurred \bullet most in the training set. (e.g. man/NN)

How accurate do you think this baseline would be at tagging words?

A) <50% B) 50-75% C) 75-90% D) >90%

The answer is (D)

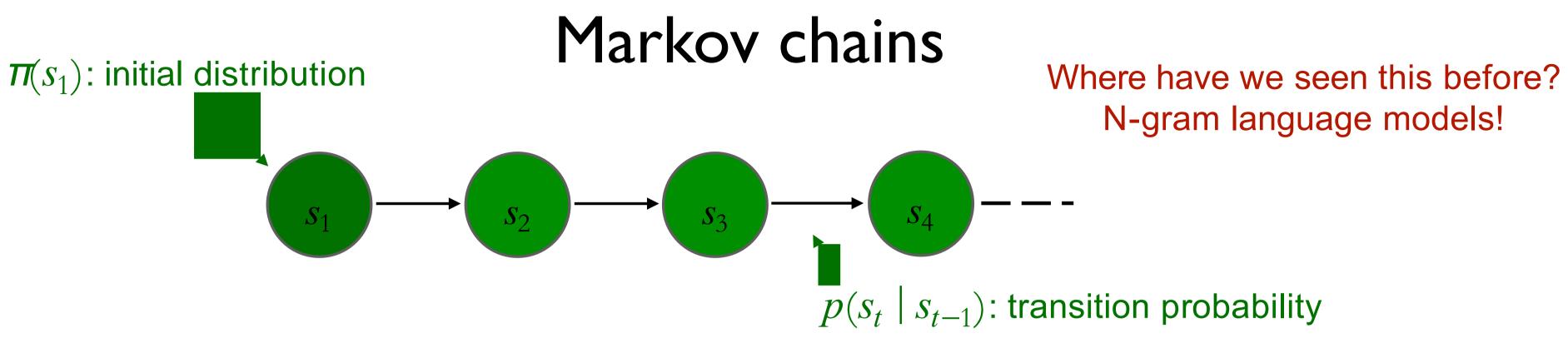
A simple baseline

- Many words might be easy to tag
- **Most frequent class:** Assign each word to the class it occurred \bullet most in the training set. (e.g. man/NN)
- Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)!
- State of the art $\sim 97\%$
- Average English sentence ~14 words
 - Sentence level accuracies: $0.92^{14} = 31\%$ vs $0.97^{14} = 65\%$
- POS tagging not solved yet!

Some observations

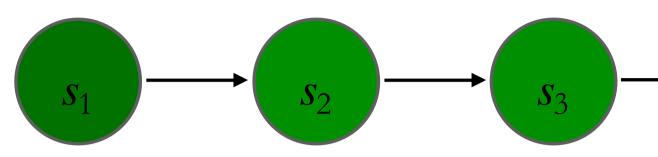
- The function (or POS) of a word depends on its context •
 - The/DT old/JJ man/NN bought/VBP the/DT boat/NN •
 - The/DT old/NN man/VBP the/DT boat/NN ullet
- Certain POS combinations are extremely unlikely •
 - $\langle JJ, DT \rangle$ ("good the") or $\langle DT, IN \rangle$ ("the in")
- Better to make decisions on entire sentences instead of individual words ullet

Hidden Markov Models



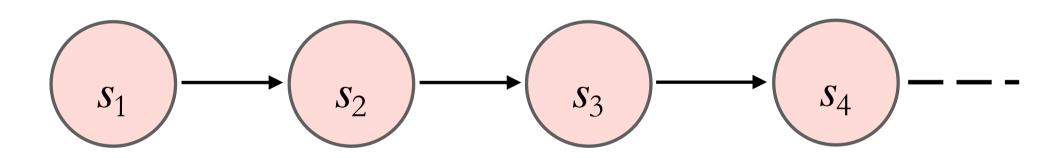
- Model probabilities of **sequences** of variables
- Each state can take one of K values (can assume {1, 2, ..., K} for simplicity) Markov assumption: $P(s_t | s_1, s_2, \dots, s_{t-1}) \approx P(s_t | s_{t-1})$
- A Markov chain is specified by
 - Initial probability distribution $\pi(s), \forall s \in \{1, ..., K\}$
 - Transition probability matrix ($K \times K$)

Markov chains



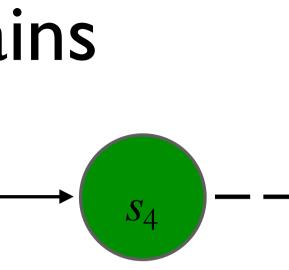
The/DT cat/NN sat/VBD on/IN the/DT mat/NN

Markov chains can help us model entire sentences.

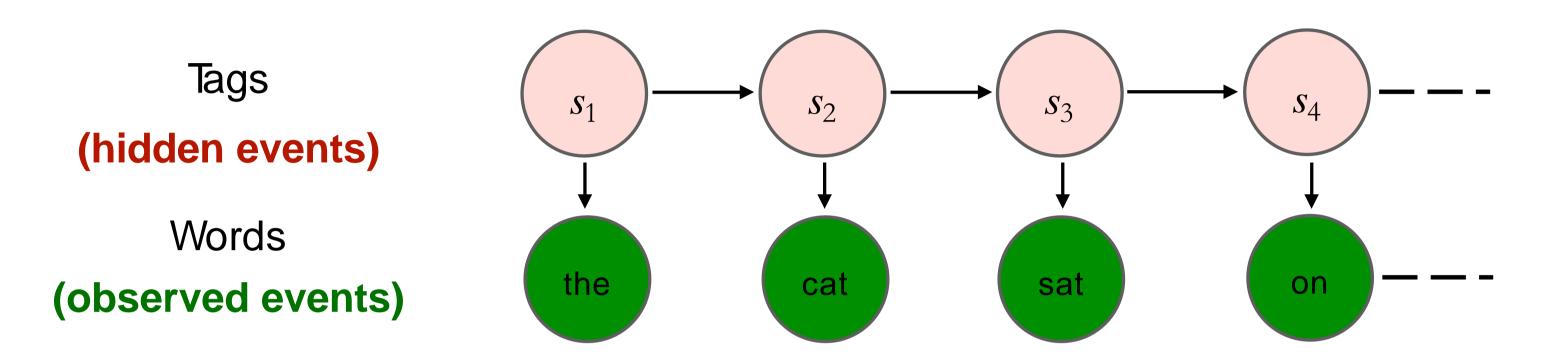


The/?? cat/?? sat/?? on/?? the/?? mat/??

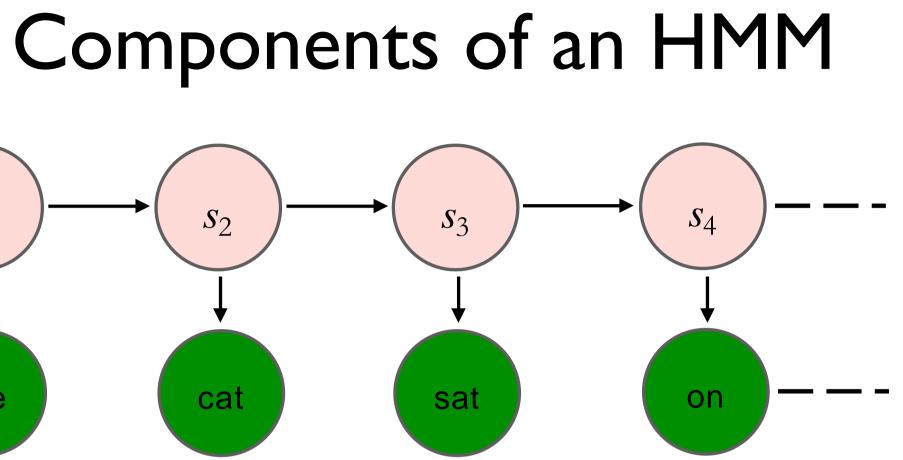
BUT we don't normally see sequences of POS tags appearing in text

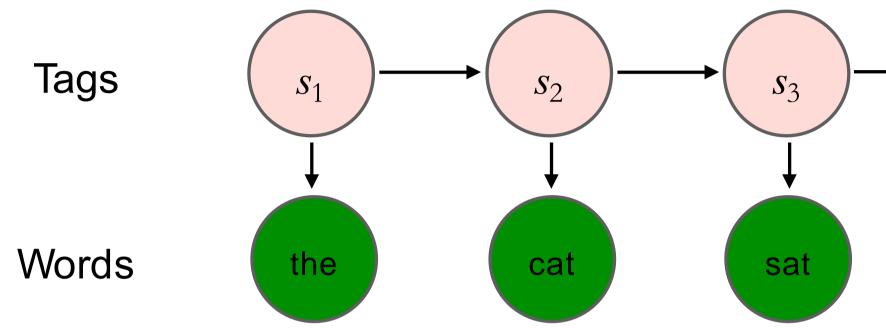


Hidden Markov Model (HMM)



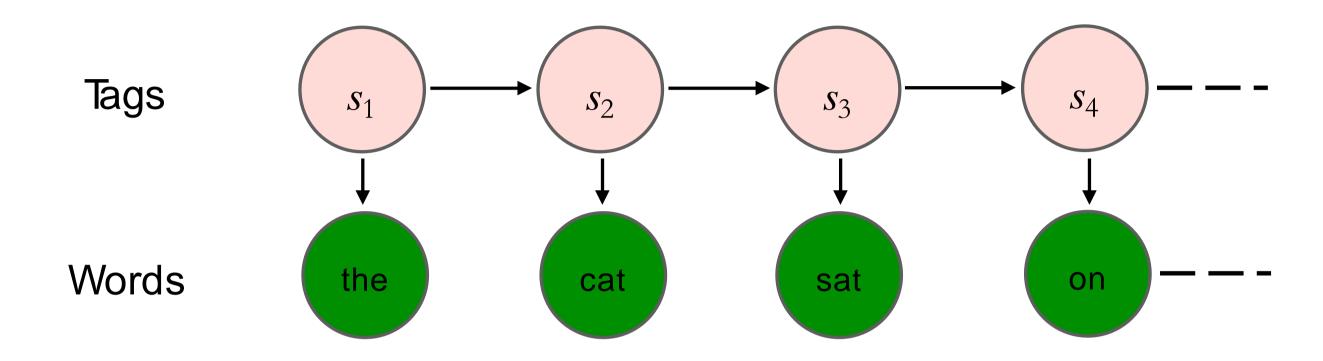
- We don't normally see sequences of POS tags in text •
- However, we do observe the words! lacksquare
- The HMM allows us to jointly reason over both hidden and observed events.
 - Assume that each position has a tag that generates a word





- 1. Set of states S = {1, 2, ..., K} and set of observations $O = \{o_1, ..., o_n\}$ $o_i \in V$
- 2. Initial state probability distribution $\pi(s_1)$
- **3.** Transition probabilities $P(s_{t+1} | s_t)$
- 4. Emission probabilities $P(o_t | s_t)$

Assumptions



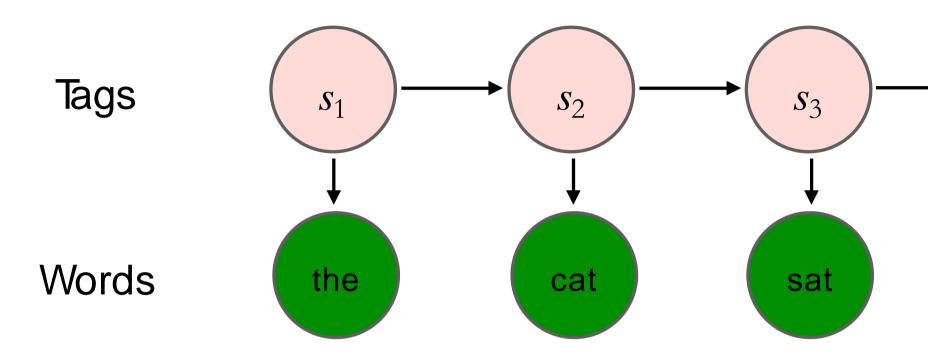
1. Markov assumption:

$$P(s_t | s_1, \ldots, s_{t-1}) \approx P(s_t | s_{t-1})$$

2. Output independence:

$$P(o_t | s_1, \ldots, s_t) \approx P(o_t | s_t)$$

Sequence likelihood

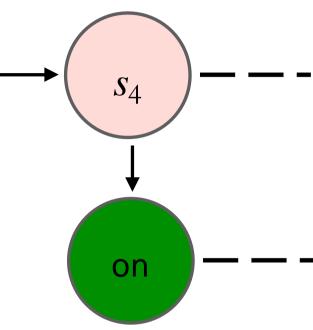


$$P(S, O) = P(s_1, s_2, \dots, s_n, o_1, o_2, \dots, o_n)$$

= $\pi(s_1)p(o_1 \mid s_1) \prod_{i=2}^n P(s_i \mid s_{i-1})P(o_i \mid s_i)$
transition emission
probability probability

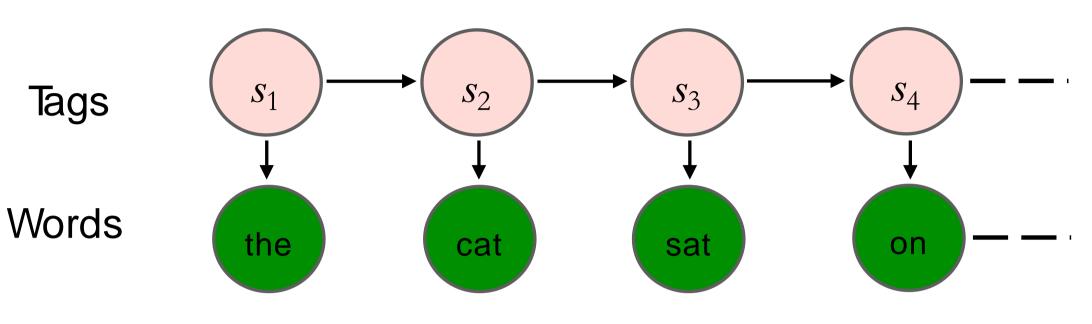
If we add a dummy state $s_0 = \emptyset$ at the beginning,

$$P(S, O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}) P(o_i \mid s_i) \qquad [\pi(s_1) = P(s_1 \mid \emptyset)]$$

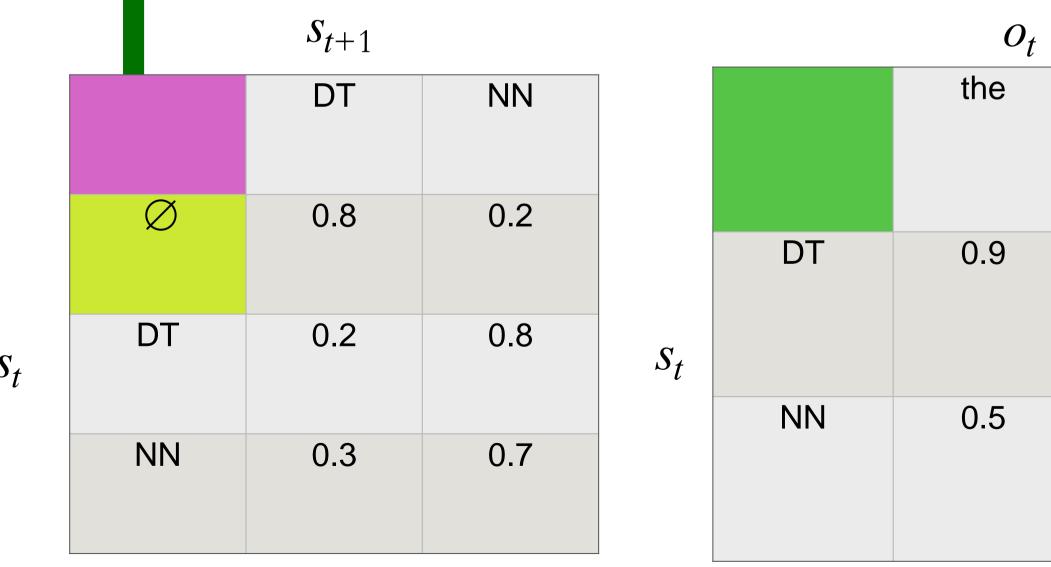


n ility Juan

Example: Sequence likelihood



Dummy start state



 S_t

What is the joint probability P(the cat, DT NN)?

A) (0.8 * 0.8) * (0.9 * 0.5)**B)** (0.2 * 0.8) * (0.9 * 0.5)C) (0.3 * 0.7) * (0.5 * 0.5)**D)** (0.8 * 0.2) * (0.5 * 0.1)

The answer is (A).

cat 0.1 0.5

Learning

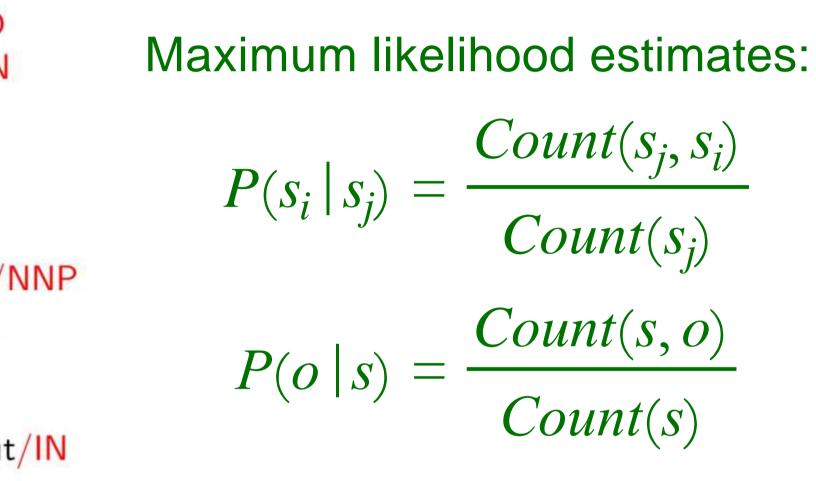
Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

•••

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.



Q: How many probabilities to estimate? A: transition probabilities - (K + 1) K emission probabilities - $|V| \times K$

Learning example

- 1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. The/DT old/NN man/VBP the/DT boat/NN

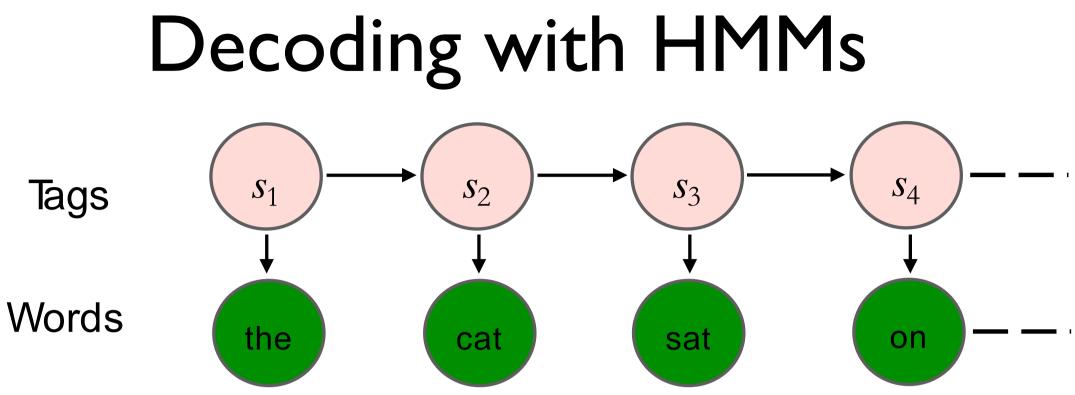
$$\pi(DT) = P(DT \mid \emptyset) = 2/3$$

$$P(NN \mid DT) = 4/4 \qquad P(DT \mid IN) = 1/2$$

$$P(cat \mid NN) = 1/4 \qquad P(the \mid DT) = 2/4$$

Maximum likelihood estimates: $P(s_i | s_j) = \frac{Count(s_j, s_i)}{Count(s_j)}$ $P(o | s) = \frac{Count(s, o)}{Count(s)}$

(assuming we differentiate cased vs uncased words)



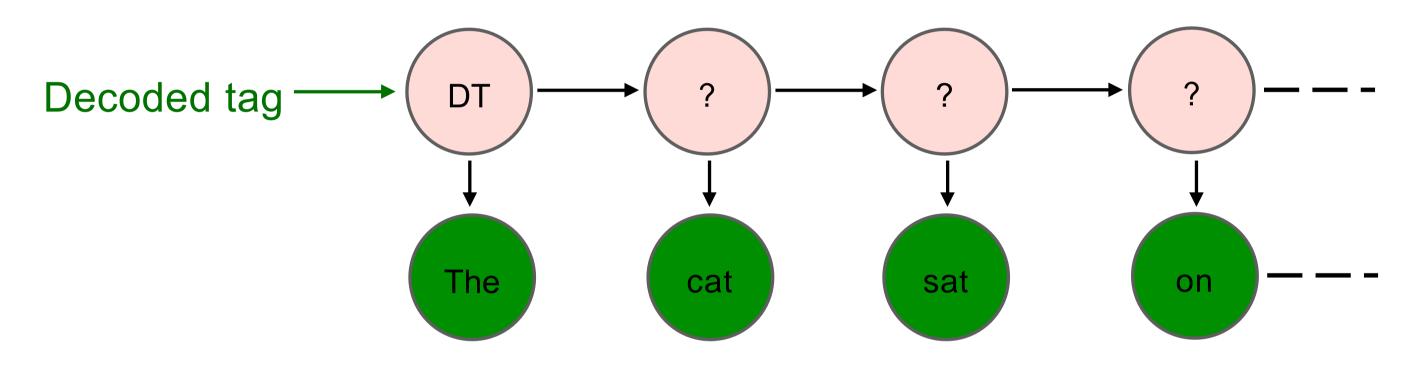
Task: Find the most probable sequence of states $S = s_1, s_2, \ldots, s_n$ given the observations $O = o_1, o_2, \ldots, o_n$ $\hat{S} = \arg \max P(S \mid O) = \arg \max \frac{P(O \mid S)P(S)}{P(S)}$ P(O)S S $= \arg \max_{S} P(O \mid S) P(S)$ $= \arg \max_{s_1,...,s_n} \prod_{i=1} P(s_i \mid s_{i-1}) P(o_i \mid s_i)$

[Bayes' Rule]

How can we maximize this? Search over all state sequences?

Greedy search

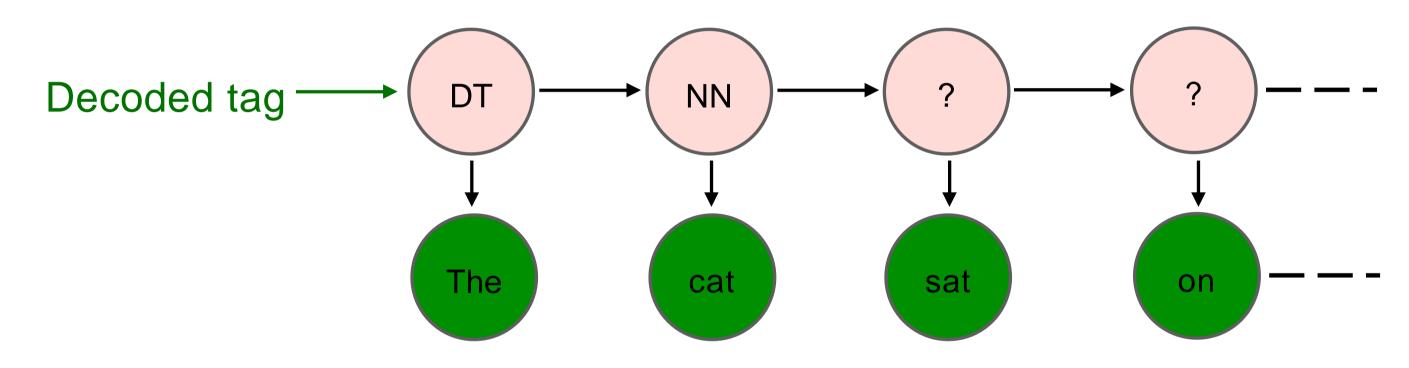
• Decode one state at at time



$$\underset{s}{\arg \max} \pi(s_1 = s) p(\text{The} \mid s) = \text{DT}$$

Greedy search

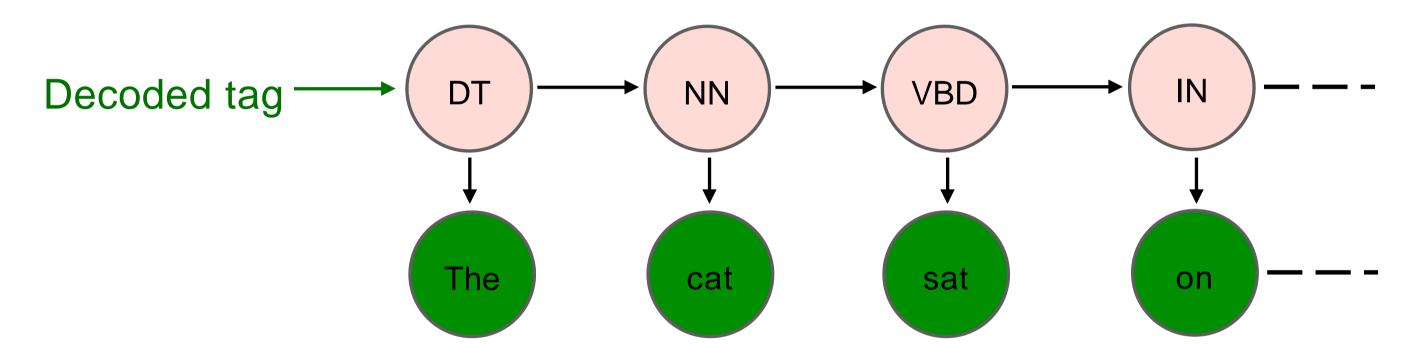
• Decode one state at at time



$\underset{s}{\arg\max p(s \mid DT)p(\mathsf{cat} \mid s)} = \mathsf{NN}$

Greedy search

• Decode one state at at time

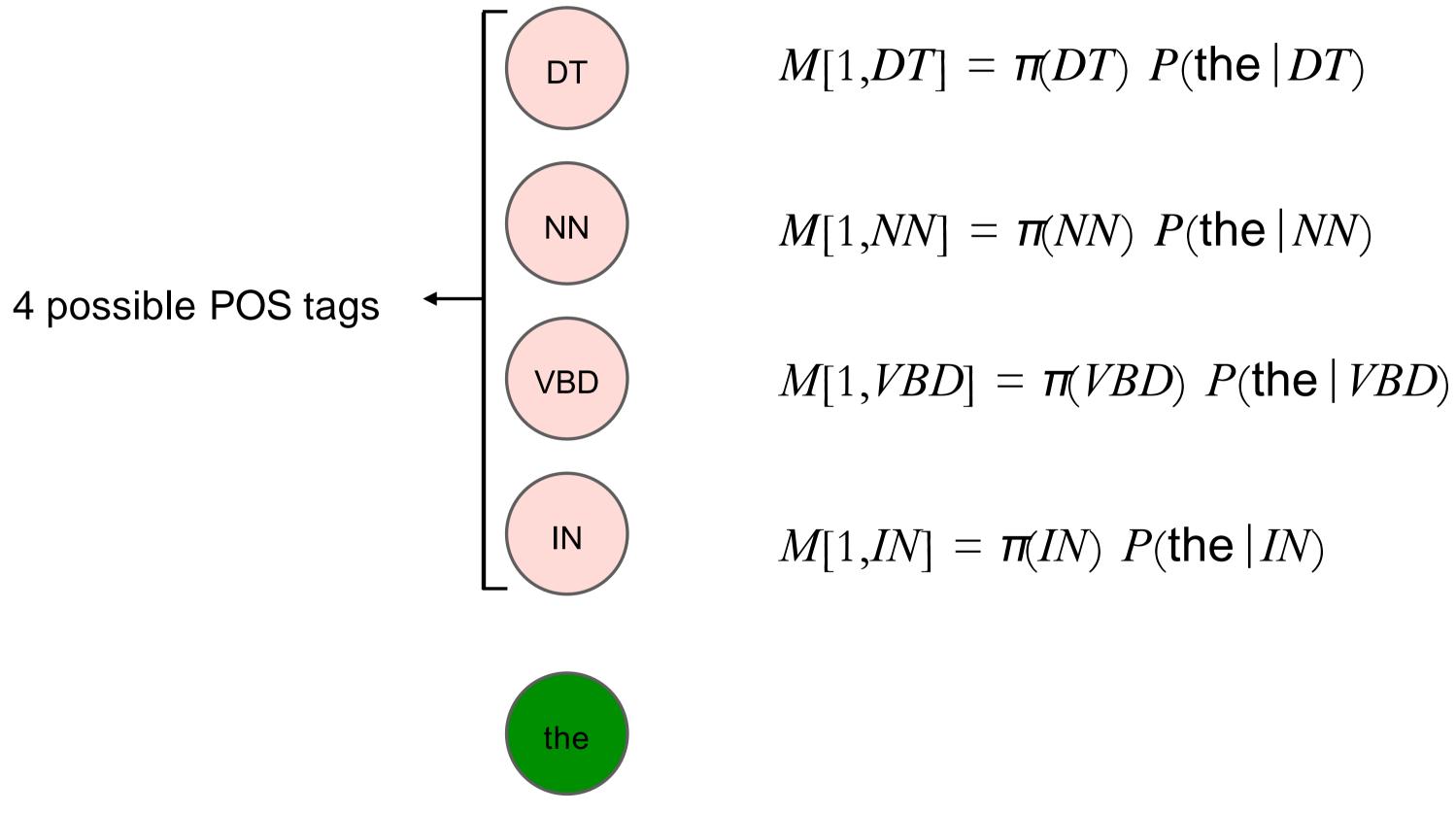


$$\hat{s}_{t} = \arg \max_{s} p(s \mid \hat{s}_{t-1}) p(o_{t} \mid s)$$

Very efficient but it doesn't guarantee to produ

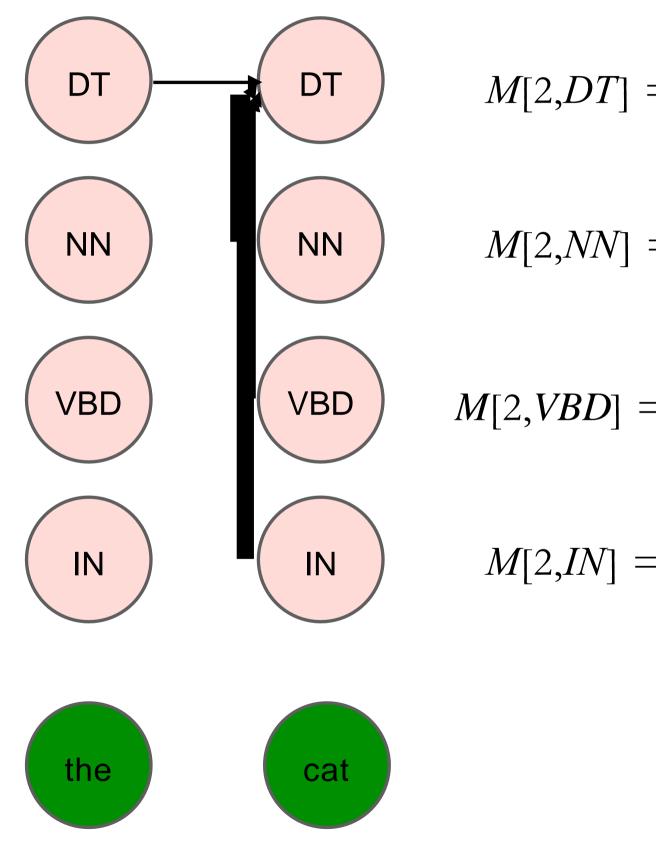
ice the overall optimal sequence

- Use dynamic programming!
- Maintain some extra data structures \bullet
- Probability lattice, M[T, K] and backtracking matrix, B[T, K]
 - T: Number of time steps
 - K: Number of states
- M[i, j] stores joint probability of most probable sequence of states ending with state j at time i,
- B[i, j] is the tag at time i-1 in the most probable sequence ending with tag j at time i



Forward

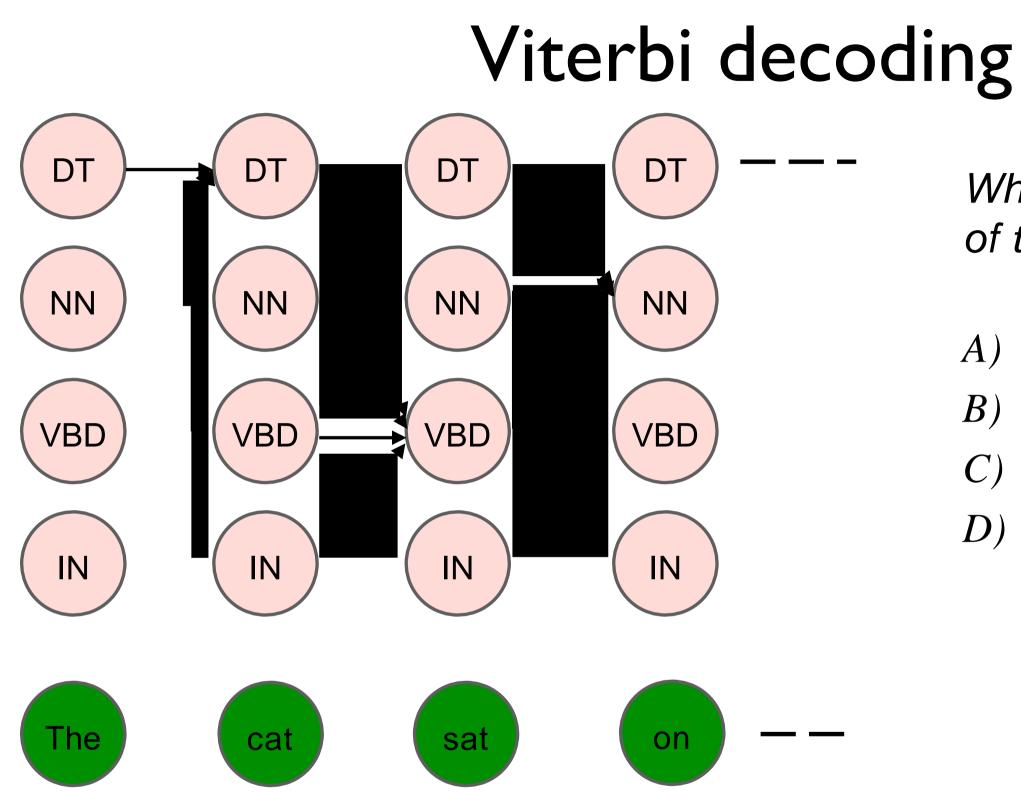
Initialize the table



Forward

Consider all possible previous tags

- $M[2,DT] = \max_{k} M[1,k] P(DT|k) P(\operatorname{cat}|DT)$
- $M[2,NN] = \max_{k} M[1,k] P(NN|k) P(\operatorname{cat}|NN)$
- $M[2, VBD] = \max_{k} M[1,k] P(VBD \mid k) P(\mathsf{cat} \mid VBD)$
 - $M[2,IN] = \max_{k} M[1,k] P(IN|k) P(\mathsf{cat}|IN)$



 $M[i,j] = \max M[i-1,k] P(s_j | s_k) P(o_i | s_j) \quad 1 \le k \le K \quad 1 \le i \le n$ k

What is the time complexity of this algorithm?

A)
$$O(n)$$

B) $O(nK)$
C) $O(nK^2)$
D) $O(n^2K)$

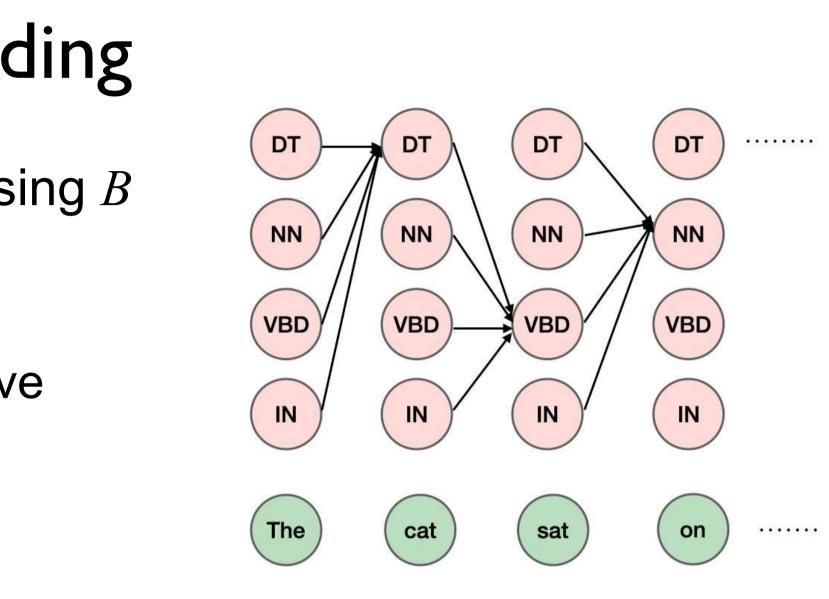
The answer is (C).

n = number of timesteps K = number of states

Backward: Pick $\max M[n, k]$ and backtrack using B_k

 In practice, we maximize sum of log probabilities (or minimize the sum of negative log probabilities) instead of maximize the product of probabilities

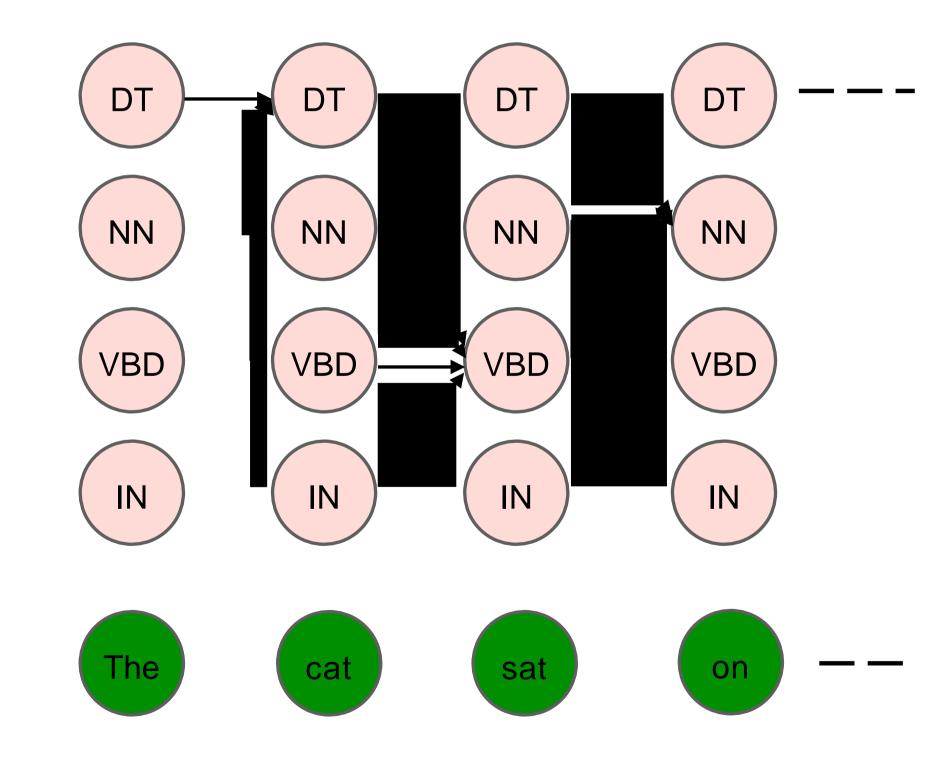
$$M[2,NN] = \max_{k} \{M[1,k] \ P(NN|k) \ P(\mathbf{C}_{k}) \}$$
$$M[2,NN] = \max_{k} \{M[1,k] + \log P(NN|k)\}$$



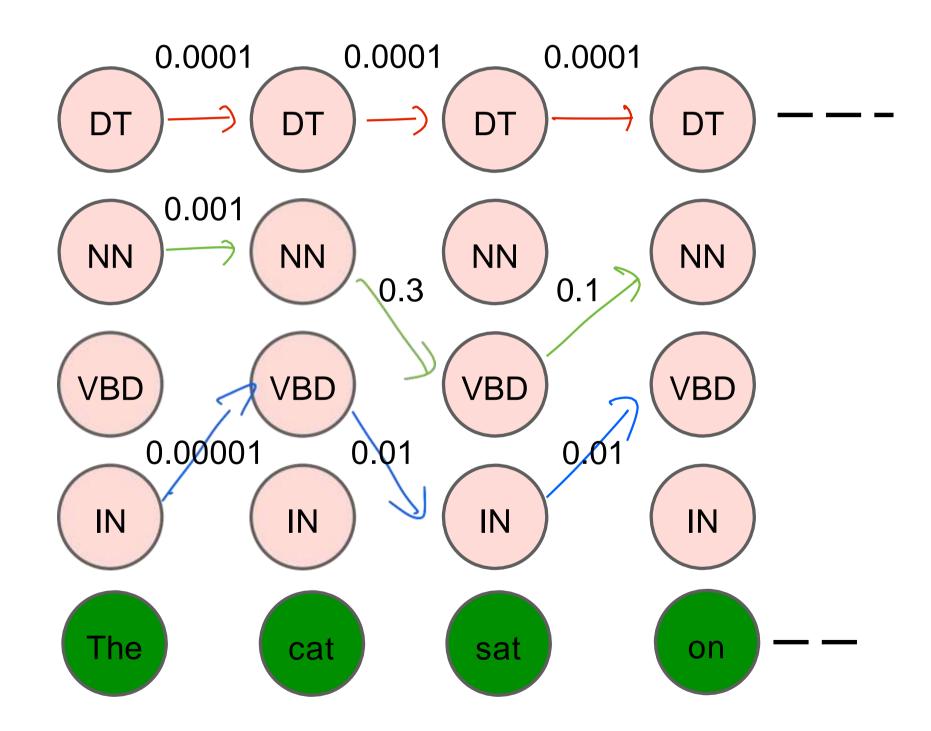
 $\operatorname{cat}(NN)$

 $k) + \log P(\operatorname{cat}|NN) \}$

If K (number of possible hidden states) is too large, Viterbi is too expensive!

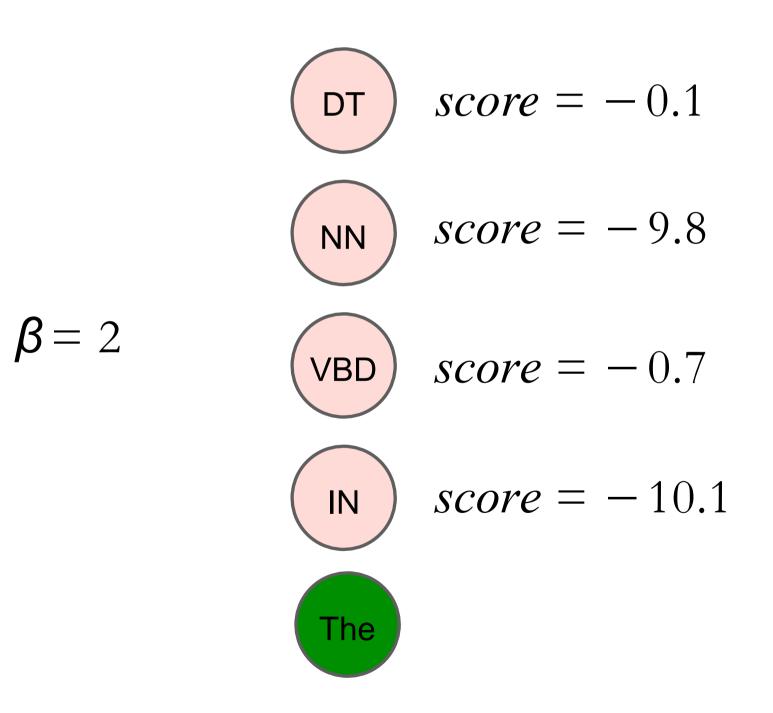


If K (number of possible hidden states) is too large, Viterbi is too expensive! •

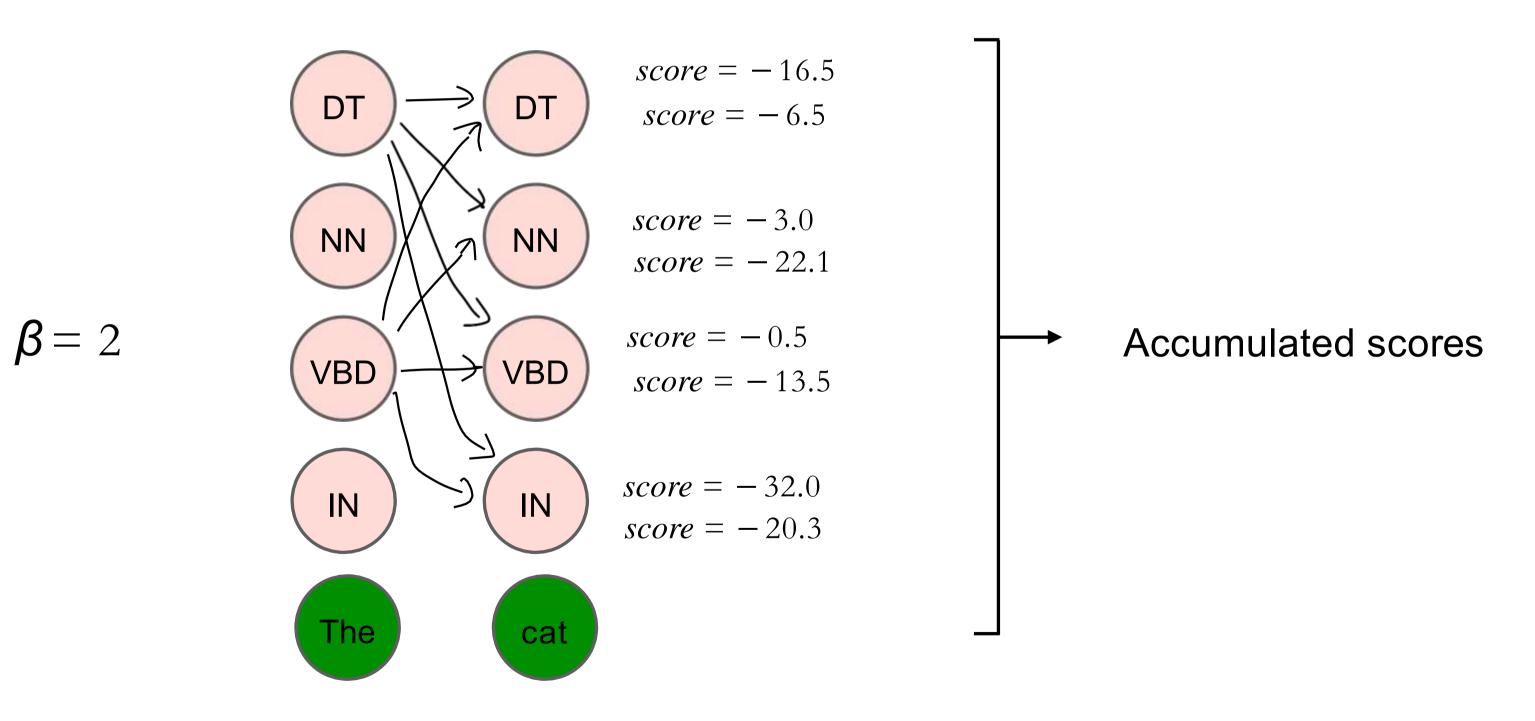


Observation: *Many paths have very low likelihood!*

- Keep a fixed number of hypotheses at each point
- Beam width, β

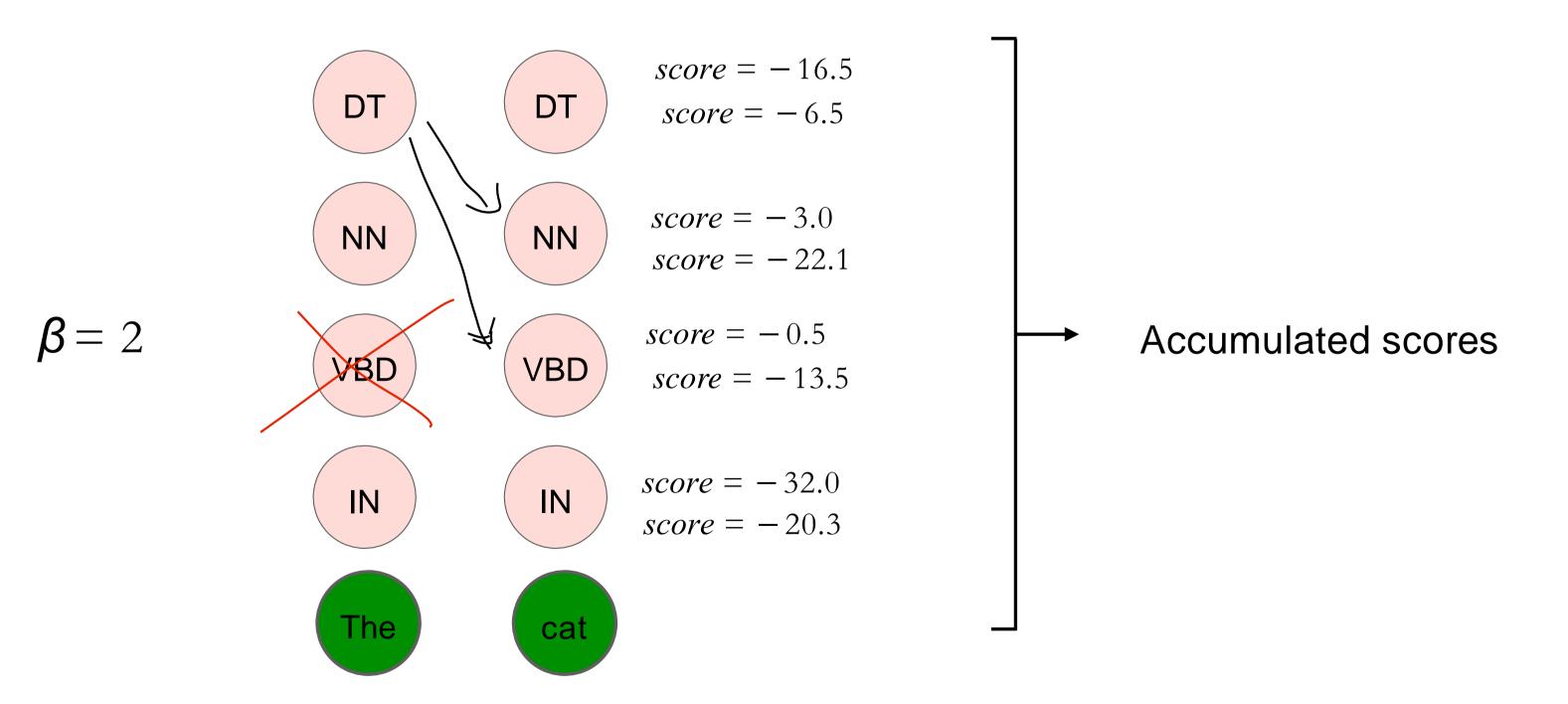


- Keep a fixed number of hypotheses at each point
- Beam width, β



Step 1: Expand all partial sequences in current beam

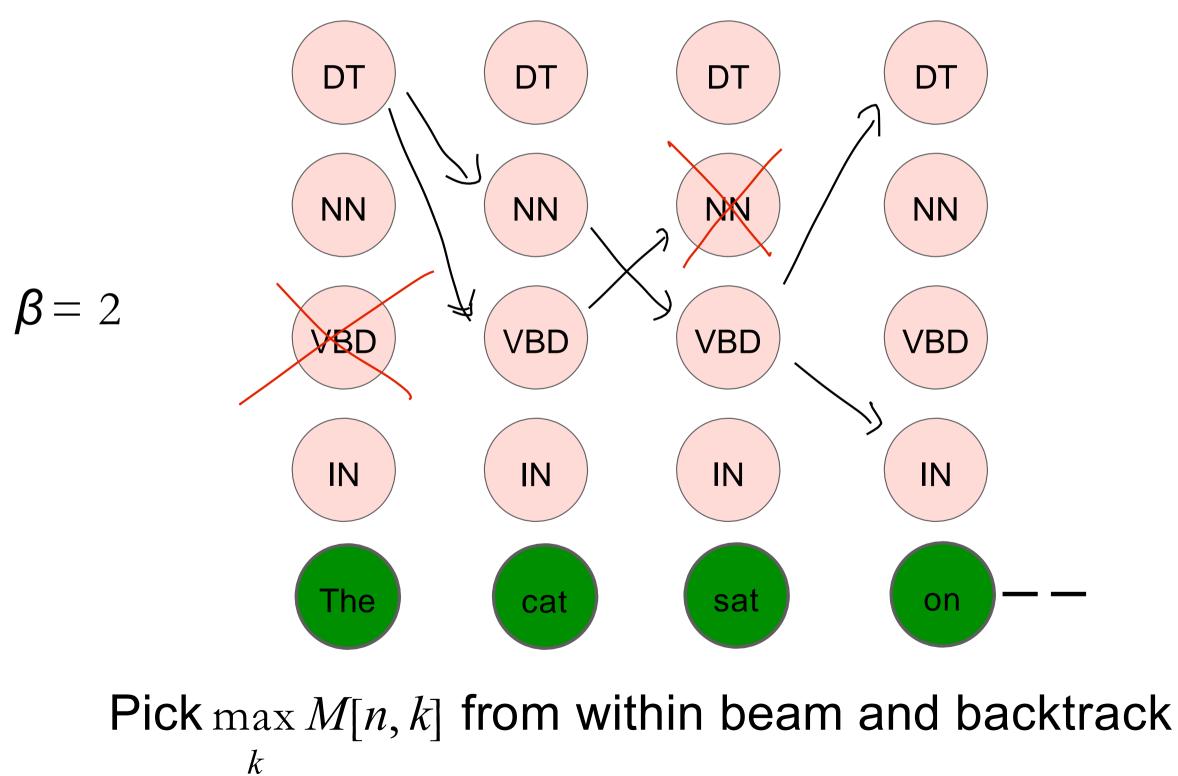
- Keep a fixed number of hypotheses at each point
- Beam width, β •



Step 2: Prune set back to top β sequences (sort and select)

... and Repeat!

- Keep a fixed number of hypotheses at each point
- Beam width, β ullet



What is the time complexity of this algorithm?

n = number of timesteps K = number of states β = beam width

A: $O(nK\beta)$

- If K (number of states) is too large, Viterbi is too expensive!
- Keep a fixed number of hypotheses at each point
 - Beam width, β
- Trade-off (some) accuracy for computational savings
- **Final remark**: beam search is a common decoding method for any language \bullet generation tasks (e.g., n-gram LMs, GPT-3)

Greedy: choose the most likely word! To predict the next word given a context of two words w_1, w_2 :

$w_3 = \arg\max_{w \in V} P(w \mid w_1, w_2)$