

AIE1007: Natural Language Processing

L5:Word Embeddings II

Autumn 2024

Word embeddings

Count-based approaches

- Used since the 90s
- Sparse word-word co-occurrence PPMI matrix
- Decomposed with SVD

Prediction-based approaches • Formulated as ^a machine learning problem • Word2vec (Mikolov et al., 2013) • GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis *(Firth, '57)* **"Similar words occur in similar contexts"**

Goal: represent words as **short** (50-300 dimensional) & **dense** (real-valued) vectors

Word embeddings: the learning problem

Learning vectors from text for representing words

- **Input**: ^a large text corpus, vocabulary *^V*, vector dimension d (e.g., 300)
- **Output**: *f* : *V !* R*^d*

Each coordinate/dimension of the vector doesn't have a particular interpretation

Word embeddings

Basic property: similar words have similar vectors

Word

word *w**= "sweden" arg max cos(*e*(*w*)*,* $e(w^{\kappa})$ *w2V*

norway denmark finland switzerland belgium netherlands iceland estonia slovenia

was then you have the three than the three years and you have them there have

Cosine distance

0.760124 0.715460 0.620022 0.588132 0.585835 0.574631 0.562368 0.547621 0.531408

cos(*u*, *v*) ranges between -1 and 1

Word2vec: How does it work?

word2vec

- \bullet (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space
- \bullet (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

Thomas Mikolov

Continuous Bag of Words (CBOW) Skip-gram

Skip-gram

- Assume that we have a large corpus w_1 , w_2 , ..., w_T \in V
- **Key idea:** Use each word to **predict** other words in its context
- Context: a fixed window of size 2*m* (m = 2 in the example)

 $P(b | a)$ = given the center word is , what is the probability that is a context word?

 $P(\cdot | a)$ is a probability distribution defined over V: ∑ *P*(*w* ∣ *a*) = 1 *w*∈*V*

> We are going to define this distribution soon!

Convert into training data: (into, problems) (into, turning) (into, banking) (into, crises) (banking, turning) (banking, into) (banking, crises) (banking, as)

…

Skip-gram

Our goal is to find parameters that can maximize *P*(problems | into) × *P*(turning | into) × *P*(banking | into) × *P*(crises | into) × *P*(turning | banking) × *P*(into | banking) × *P*(crises | banking) × *P*(as | banking)...

Skip-gram: objective function

• For each position $t = 1, 2, \ldots, T$, predict context words within context size m, given center word *w^t* :

 L_i | W_t ; all the parameters to be optimized

$$
L(\sqrt{t}) = \frac{1}{\sqrt{t}}
$$

\n
$$
t = 1 - m \le j \le m, j = 0
$$

\n
$$
P(W_{t+1}) = \frac{1}{\sqrt{t}}
$$

It is equivalent to minimizing the (average) negative log likelihood:

m ≤ j ≤ m , j /= 0 log *P* (*w t* + *j | w^t* ; \checkmark

$$
J(\sqrt{2}) = \frac{1}{T} \log L(\sqrt{2}) = \frac{1}{T} \sum_{\substack{t=1 \\ m \le j \le m, j \neq n}}^{T} X
$$

How to define *P*(*wt*+*^j* ∣ *wt* ;*θ*)?

Use two sets of vectors for each word in the vocabulary

u*^a* ∈ ℝ*^d* : vector for center word

 $\mathbf{v}_b \in \mathbb{R}^d$: vector for context word

$$
, \ \forall a \in V
$$

$$
d \quad , \ \forall b \in V
$$

• Use inner product **u***^a* ⋅ **v***^b* to measure how likely word *a* appears with context word *b*

Recall that $P(\cdot | a)$ is a probability distribution defined over V…

Softmax we have seen in multinomial logistic regression!)

$$
P (W_{t+j} | W_t) = P \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{k2V \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{k})}
$$

… vs multinominal logistic regression

•

t + *j P* (*w | w^t*) = $\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})$ P k *zv* $exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)$ Essentially a |V|-way classification problem

• If we fix \mathbf{u}_{w_t} , it is reduced to a multinomial logistic regression problem.

 $P(y = c | x) =$ Multinomial logistic regression:

> • However, since we have to learn both and together, the training objective is non-convex.

∑

m

$$
\frac{\exp(\mathbf{w}_c \cdot \mathbf{x} + b_c)}{m \exp(\mathbf{w}_j \cdot \mathbf{x} + b_j)}
$$

j=1

-
-

… vs multinominal logistic regression

- It is hard to find ^a global minimum
- But can still use stochastic gradient descent to optimize :

$$
\mathcal{L}^{(t+1)} = \mathcal{L}^{(t)} -
$$

$$
\mathcal{H} \nabla \mathcal{J}(\mathcal{N})
$$

Important note

$$
J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}
$$

- In this formulation, we don't care about the classification task itself like we do for the logistic regression model we saw previously.
- The key point is that the *parameters* used to optimize this training objective when the training corpus is large enough—can give us very good representations of words (following the principle of distributional hypothesis)!

How many parameters in this model?

$$
J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}
$$

How many parameters does this model have (i.e. what is size of)?

(a) *d*|*V*| (b) 2*d*|*V*| (c) 2*m*|*V*| (d) 2*md*|*V*|

d = dimension of each vector

The answer is (b).

Each word has two d-dimensional vectors, so it is 2 × |*V*| × *d*.

word2vec formulation

Q: Why do we need two vectors for each word instead of one? A: because one word is not likely to appear in its own context window, e.g., *P*(dog ∣ dog) should be low. If we use one set of vectors only, it essentially needs to minimize udog ⋅ udog...

$$
J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}
$$

 \overline{r}

- Q: Which set of vectors are used as word embeddings?
	- A: This is an empirical question. Typically just **u***^w* but you can also concatenate the two vectors..

How to train this model?

$$
J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \neq 0} \log \frac{1}{\sum_{t=1}^{T} \sum_{j \in S_t} \log \frac{1}{\sum_{t=1}^{
$$

- To train such ^a model, we need to compute the vector gradient $r\sqrt{J(\sqrt{2})}$ = ?
- Remember that model parameters, in one vector. represents all 2*d*|*V*

 $\theta =$

 $\frac{\exp(\mathbf{u}_{w_t}\cdot \mathbf{v}_{w_{t+j}})}{\sum_{k\in V}\exp(\mathbf{u}_{w_t}\cdot \mathbf{v}_k)}$

Vectorized gradients

@f @ f $= \left[\frac{e^{i\theta} - 1}{\sqrt{2} \cdot 1} + \frac{e^{i\theta} - 1}{\sqrt{2} \cdot 1} \right]$

$$
f(x) = x \cdot a
$$

$$
x, a 2
$$

$$
R^{n}
$$

$$
x^{n}
$$

$$
x^{n}
$$

$$
f = x_1 a_1 + x_2 a_2
$$

\n
$$
x_n a_n
$$

\n
$$
\frac{a_1}{a_2} = \left[\frac{a_2}{a_1} + \frac{a_2}{a_2}\right]
$$

\n
$$
f = a_1 a_2
$$

\n
$$
\frac{a_2}{a_1} = a_2 a_2
$$

f = *x*1*a*¹ + *x*2*a*² + *. . .* +

Vectorized gradients: exercises

$inswer$ is (c) . exp(∑ *n* $\binom{n}{k=1}$ $W_i X_i$ ∂*xⁱ* $= exp($ *n* ∑ *k*=1 *wixⁱ*)*wⁱ*

Let
$$
f = \exp(\mathbf{w} \cdot \mathbf{x})
$$
, what is the value of $\frac{\partial f}{\partial \mathbf{x}}$?
\n(a)
\n(b) $\exp(\mathbf{w} \cdot \mathbf{x})$
\n(c) $\exp(\mathbf{w} \cdot \mathbf{x})\mathbf{w}$
\n(d)
\n
$$
\frac{\partial}{\partial x_i} =
$$

$w, x \in \mathbb{R}^n$

Let's compute gradients for
$$
y_1 \in \mathcal{Y} \setminus \{0\} = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}
$$

Consider one pair of center/context words (*t*, *c*):

$$
y = - \frac{V}{\rho} \frac{\exp(u_t \cdot v_c)}{\log \frac{V}{\log \rho}}.
$$

We need to compute the gradient of with respect to **u**_t and \mathbf{v}_k , ∀ $k \in V$

Let's compute gradients for
\n
$$
\text{word2v}_{\text{P}}^{\text{ex}_{\text{P}}}(u_t \cdot v_c) \qquad \text{where}
$$
\n
$$
\text{log} \quad \text{log}
$$

$$
k2V
$$

 $\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})$ $P(W_{t+j} | W_t) = P$ k *2V* exp(**u**_{*wt*} *·* **v***^k*) Recall that

$$
= -\mathbf{v}_c + \frac{\mathbf{p}^2 V}{k^2 V} \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_k) \cdot k}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}
$$

$$
= -\mathbf{v}_c + \frac{\mathbf{X} \cdot \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}
$$

$$
= -\mathbf{v}_c + \frac{\rho^{exp(\mathbf{u}_l - \mathbf{v}_k)} \mathbf{v}_k}{k^2 \mathbf{v} + k^2 \mathbf{v}^2 \mathbf{v} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)} \mathbf{v}_k
$$

= -\mathbf{v}_c + P(k |
_{k2V} t) \mathbf{v}_k

Gradients for word2vec

What about context vectors?

 $\exp(\mathbf{u}_t \cdot \mathbf{v}_c)$ k *zv* $exp(\mathbf{u}_t \cdot \mathbf{v}_k)$ ◆

$$
\frac{\omega}{\sqrt{\omega}} = \begin{cases}\n(P(k \mid t) - 1) \mu & k = \\
\frac{C}{\sqrt{\omega}} & R = \frac{V}{\log} \\
C & C\n\end{cases}
$$

See assignment 2 :)

Overall algorithm

, **context size m**

- Input: text corpus, embedding size *d*, vocabulary
- Initialize **u***ⁱ* , **v***i* randomly ∀*i* ∈ *V*
- \bullet Run through the training corpus and for each training instance (*t*, *c*):

Q: Can you think of any issues with this algorithm?

Convert the training data into: (into, problems) (into, turning) (into, banking) (into, crises) (banking, turning) (banking, into) (banking, crises) (banking, as)

$$
= -v_c + \begin{cases} \nX & P(k \mid E) \\
\frac{\partial y}{\partial k} & P(k \mid t) - 1 \n\end{cases} \begin{cases} \nK = 1 \\ \n\frac{1}{2} \\ \n\frac{1}{2} \\ \n\frac{1}{2} \\ \n\frac{1}{2} \end{cases}
$$

…

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (*t*, *c*), you need to update **v***^k* with all the words in the vocabulary! This is very expensive computationally.

Negative sampling: instead of considering all the words in V, let's randomly sample (5-20) negative examples.

softmax:

\n
$$
y = -\frac{\sqrt{\frac{\exp(u_t - v_k)}{\exp(\frac{v_t - v_k}){\exp(\frac{v_t - v_k)}{\exp(\frac{v_t - v
$$

$$
\frac{\partial y}{\partial \mathbf{u}_t} = -\mathbf{v}_c + \sum_{k \in V} P(k \mid t) \mathbf{v}_k \qquad \qquad \frac{\partial y}{\partial \mathbf{v}_k} =
$$

$$
\begin{array}{cc}\n(P(K \mid t) - 1) \mu & k = \\
\text{c} P (k \mid t) \mathbf{u}_t & k = \\
\text{c}\n\end{array}
$$

Skip-gram with negative sampling (SGNS)

Key idea: Convert the *V*|**-way classification into a set of binary classification tasks.**

Every time we get a pair of words (*t*, *c*), we don't predict *c* among all the words in the vocabulary. Instead, we predict (*t*, *c*) is a positive pair, and (*t*, *c'*) is a negative pair for a small number of sampled *c'*.

P(w): sampling according to the frequency of words

Similar to **binary logistic regression**, but we need to optimize and together.

P (*y* = 1 | *t*, *c*) = $\sigma(u_t \cdot v_c)$ $p(v = 0 | t$

$$
y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum_{i=1}^K \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))
$$

$$
(\mathbf{C}^{\prime}, \mathbf{C}^{\prime}) = 1 - \sigma(\mathbf{u}_{t} \cdot \mathbf{v}_{c^0}) = \sigma(-\mathbf{u}_{t} \cdot \mathbf{v}_{c^0})
$$

Understanding SGNS

$$
y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum_{i=1}^K \mathbb{E}_{j \sim P(i)}
$$

In skip-gram with negative sampling (SGNS), how many parameters need to be updated in for every (*t*, *c*) pair?

(a) *Kd*

- (b) 2*Kd*
- (c) (*K* + 1)*d*
- (d) (*K* + 2)*d*

The answer is (d). We need to calculate gradients with respect to \mathbf{u}_t and $(K + 1)$ \mathbf{v}_i (one positive and K negatives).

 $\sigma_{(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j)))$

Continuous Bag of Words (CBOW)

$$
L(\sqrt{2}) = \begin{cases} \n\frac{\sqrt{7}}{t} & \text{if } | \{W_{t+j}\}, -m \leq j \leq m, j \neq 0 \\ \n\frac{1}{t} & \text{if } | \{W_0, j\} | & \text{if } | \{W_0, j \} | & \text{if } | \{W_0,
$$

$$
\overline{\mathbf{v}}_t = \frac{1}{2} \qquad \mathbf{X} \qquad \mathbf{v}_{t+}
$$
\n
$$
m \qquad m \le j \le m, j \ne 0
$$

$$
P(w_t | \{w_{t+j}\}) = \frac{\exp(\mathbf{u}_{w_t} \cdot \bar{\mathbf{v}}_t)}{\sum_{k \in V} \exp(\mathbf{u}_k \cdot \bar{\mathbf{v}}_t)}
$$

ist.

Skip-gram Continuous Bag of Words (CBOW)

FastText: Subword Embeddings

Similar to Skip-gram, but break words into n-grams with $n = 3$ to 6

where: 3-grams: <wh, whe, her, ere, re>

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

X *g2n* - grams(*wi*) **v** *j* **u***g ·* • Replace $\mathbf{u}_i \cdot \mathbf{v}_j$ by

4 grams: <whe, wher, here, ere>

5 grams: <wher, where, here>

6 grams: <where, where>

Trained word embeddings available

- word2vec: https://code.google.com/archive/p/word2vec/
- GloVe: https://nlp.stanford.edu/projects/glove/
- FastText: https://fasttext.cc/

Download pre-trained word vectors

- . Pre-trained word vectors. This data is made available under the Public Domain Dedication and License v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
	- o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
	- o Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
	- o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
	- o Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased… Applied to many other languages

Easy to use!

from gensim.models import KeyedVectors # Load vectors directly from the file model = KeyedVectors.load_word2vec_format('data/GoogleGoogleNews-vectors-negative300.bin', binary=True) # Access vectors for specific words with a keyed lookup: $vector = model['easy']$

Evaluating word embeddings

Extrinsic evaluation

- Let's plug these word embeddings into a real NLP system and see whether this improves performance
- Could take ^a long time but still the most important evaluation metric

Extrinsic vs intrinsic evaluation

Intrinsic evaluation

- Evaluate on a specific/intermediate subtask
- Fast to compute
- Not clear if it really helps downstream tasks

A straightforward solution: given an input sentence X_1 , X_2 *xⁿ* Instead of using a bag-of-words model, we can compute $Vec(X) = e(X_1) + e(X_2) + ... +$

Extrinsic evaluation

And then train a logistic regression classifier on *vec*(*x*) as we did before!

$$
x_2, \ldots,
$$

- **e**(*xn*)
-
- There are much better ways to do this e.g., take word embeddings as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353 353 pairs of words with human judgement <http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/>

Cosine similarity:

$$
\cos(\boldsymbol{u}_i, \boldsymbol{u}_j) = \frac{\boldsymbol{u}_i \cdot \boldsymbol{u}_j}{||\boldsymbol{u}_i||_2 \times ||\boldsymbol{u}_j||_2}.
$$

Metric: Spearman rank correlation

SG: Skip-gram

Intrinsic evaluation: word similarity

Intrinsic evaluation: word analogy

Word analogy test: $a : a^* :: b : b^*$

semantic

Chicago:Illinois Philadelphia: ? bad:worst cool: ?

syntactic

More examples at

<http://download.tensorflow.org/data/questions-words.txt> Metric: accuracy

b ⇤ $=$ $\arg \max \cos(e(w), e(a^{\kappa}) - e(a)) + \log(e(a))$ *e*(*b*)) *w2V*