¥

AIET1007: Natural Language Processing

L5:Word Embeddings Il

Autumn 2024

W Oor d Goal: represent words as short (50-300
dimensional) & dense (real-valued) vectors
embeddings

Count-based approaches Prediction-based approaches
® Used since the 90s ®* Formulated as a machine learning problem
* Sparse word-word co-occurrence PPMI matrix * Word2vec (Mikolov et al., 2013)

®* Decomposed with SVD ®* GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)
“Similar words occur in similar contexts”

Word embeddings: the learning

problem

Learning vectors from text for representing words

®* Input: a large text corpus, vocabulary V,
vector dimension d (e.g., 300)

® Output: f :V /I R¢

Each coordinate/dimension of the vector
doesn’t have a particular interpretation

0 _5.204 7 _0.124
0.130 0.430
Veat = %_ g Vdog B &— g
00297 00289
6 9
Nz > 53
Vthe = % 0.23 g Vianguage = % 0.76 g
9 0.98

0.199 2

Word embeddings

® Basic property: similar words have similar vectors

word w*= “sweden”

arg max cos(e(w),

ew))
2V

w

Word

norway
denmark
finland
switzerland
belgium
netherlands
iceland
estonia
slovenia

Cosine distance
. 760124
. 7154690
.620022
. 588132
. 85835
. 574631
. 562368

. 2047621
.231408

cos(u, v) ranges between -1 and 1

Word2vec: How does it work?

word2vec

* (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space
e (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

Thomas Mikolov

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)
SUM
| |

w(t+1)

w(t+2)

Continuous Bag of Words (CBOW)

/ INPUT PROJECTION OUTPUT \

w(t-2)

w(t-1)

wity)] ——»

y

w(t+1)

k w(t+2) J

Skip-gram

Skip-gram

e Assume that we have a large corpus w4, W>, ..., W+ €V o
J P 1r T2 =2 BOT A classification

o Key idea: Use each word to predict other words in its context — problem!

e Context: a fixed window of size 2m (m = 2 in the example)

P(b | a) = given the center word is

, what Is the probability that Is a
context word?

o
problems turning banking crises as .. P(- | a) is a probability distribution
L iV = : defined over V: s Plwla)=1

1 Y Y

outside context words center word outside context words wEevV

in window of size 2 at position t in window of size 2
We are going to define
this distribution soon!

Skip-gram

P(We_p | we) P(Weio | We)
Plw;. p : C
W] [g) e [we) Convert into training data:
problems turning banking crises as .. (into, problems)
‘ ; S y : (into, turning)
outside context words center word outside context words : 3
in window of size 2 at positiont in window of size 2 (!nto, ba_nkmg)
(into, crises)
PGw,_, | W) Pwres | W) (banking, turning)

(banking, into)
(banking, crises)
crises:| [as| . (ban (ing, as)

problems turning into

L ;o\ J
\ J
Y Y Y

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Our goal is to find parameters that can maximize
P(problems | into) x P(turning | into) x P(banking | into) x P(crises | into) x P(turning | banking) x P(into | banking) x P(crises | banking) x P(as | banking)...

Skip-gram: objective function

®* For each position t = 1,2,...T, predict context words within context size m,

given center word wq:
all the parameters to be optimized

Y’ Y
L(v) = P (Wiyj| Wy /
V)

t=1 —m<j<m,j/=0

e |tis equivalent to minimizing the (average) negative log likelihood:

1 1 X X
J(V) = TlogL(\/)= — logP ¢+ | W
— t=1 — (W J V)

m<j<m,j/=0

T

How to define P(w;,; |
wy;)7

e Use two sets of vectors for each word in the vocabulary

u, € R vector for center word , Va € V

vV, € RY: vector for context word , Vb € V

® Use inner product u, - v, to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

exp(Uy * Vir) =

k2v €Xp(Uw, -
Vk)

P(Wt+j ‘ Wt) =P

Recall that P(- | a) is a probability
distribution defined over V...

vs multinominal logistic
regression

exp(w,. - x+b,)

Multinomial logistic ~ P(y = ¢ | x) =

regression: >

i exp(w; - x+b))

e Essentially a |V|-way classification problem
eXp(Uw, * Vir,y)

| oy eXp(uw, * Vi) o Ifwefixu, ,itisreduced to a multinomial
p—] t

logistic regression problem.

e However, since we have to learn both and
together, the training objective is non-convex.

vs multinominal logistic
regression

“convex” e “non-convex”

® Itis hard to find a global minimum

® But can still use stochastic gradient descent to optimize

A1) o Al
A VI(V)

Important note

1 £ _ CXp(u’wt 'V’wt+j)
JO)=—=> > log

— S
T expD(W... - Vi
t=1 —m<j<m,j#0 ZkEV p(*2 ’”)

®* In this formulation, we don’t care about the classification task itself like we do for
the logistic regression model we saw previously.

®* The key point is that the parameters used to optimize this training objective—
when the training corpus is large enough—can give us very good representations
of words (following the principle of distributional hypothesis)!

How many parameters in this III
model?

1 4 exp(u’wt'v’wt-{-j)
JO=—=> > o

T &
= —m<j<m,j7#0 2_kev €XP(Uuw, - Vi)

How many parameters does this model have (i.e. what is size of)?

(a) d| V]

(b) 2d|V| d = dimension of each vector
(c) 2m|V|

(d) 2md| V| The answer is (b).
Each word has two d-dimensional vectors, soitis 2 x | V| xd.

word2vec formulation

i
1 exp(u’wt "V, j)
J(0) = = E E log a

t=1 —m<j<m,j#0 2_kev XP(Uu, - Vi)

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window,

e.g., P(dog | dog) should be low. If we use one set of vectors only,
it essentially needs to minimize Ugog * Udog--

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just u,, but you can
also concatenate the two vectors..

How to train this model?

CXp(u’wt ' V’wt+j)

7 G
1
J(0) = —= log
O =-72, 2 o e Vi)

t=1 —m<53<m,j3#0

* Totrain such a model, we need to compute
the vector gradient r j() =7

Vaardvark

/U(I,
e Remember that represents all 2d |V
model parameters | in one vector. ,
H — Uzebra
Ugardvark)
u(],

Uzebra

Vectorized gradients

@f

@

X

f = X181 + Xpaz + +
X@Q:[af]
@x “@iax;’ @

Vectorized gradients: exercises

df?

Let f = exp(w - X), what is the value of Fm w,Xx € R”
X

(a)
(b) exp(w - x) The answer is (c).
(c) exp(w - X)W

. 3 exp(y . wx) n
(d) — = s ML exp(WiX;)W;

OX,' OX,' Z

Let's compute gradients for
wordvuac

J(0) = _% Z Z log eXp(Uw, * Vuy,)

t=1 —m<j<m,j7#0 2 _kev eXP(Ww, - Vi)

Consider one pair of center/context words (t, ¢):

v 4

y = > exp(us * v¢)
log «2v €Xp(ut « Vi)

We need to compute the gradient of with respect to

Ut and Vk, Vk E V

Let's compute gradients for

P
word vae pr(ut V) ¢ @ @ucrv) @log exp(uc-vi))
— — , - = +
{) k2v eXp(U¢ * Vi) ®u @Qu @u,
5 t t P
@ 5,y exp(utVg)
X = —v,.+ P Gu
%/ =(—log(exp(ut - v¢)) + exp(u; * vi)) : oy exp(uy - vi)
0g X K2V
o . . P
—u: - ve + log(exp(u - v¢)) i 42v exp(ue - vi) + i
k2V = —V. + . v :
2y exp(u - vi)
X exp(u; " vg)
= —v,. + P \%
Recall that 2y K02V exp(u; - veo
cX th ’ VWt+' 7
P(Wt+j‘ Wt):P p(J) X
k2v eXp(Uy, - = —v.+ P(k|

Vi) k2v t)vy

Gradients for word2vec

What about context vectors?

(v 4
@ _ (Pk|t)—1)p k= y= — > exp(us * v¢)
@ CcPkltue k[log c2v €xp(Ur - Vi)
K C

See assignment 2 :)

Convert the training data into:
. (into, problems)
Overall algorithm (into, turing)
(into, banking)
(into, crises)
(banking, turning)
(banking, into)
(
(

o Input: text corpus, embedding size d, vocabulary context size m
! banking, crises)

o Initialize u;, v; randomly Vi € V baﬂﬂng, as)
e Run through the training corpus and for each training instance (¢, c):
@y X
e Update <—ut—<%)— =_Vc P(k |
u _@y k2
@ (Pkk|O—1), k=
e Update Vi — i\ —J. , ke t
’ V @y’ @. PK| . ck
v vV t)u /= C

Q: Can you think of any issues with this algorithm?

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (f, ¢), you need to update v, with
all the words in the vocabulary! This is very expensive computationally.

(
Ay @ Pk |t)y—1Np k=
ou; VHL;; s @vi CP (k| t)ut K /=
C

Negative sampling: instead of considering all the words in V, let's randomly sample

(5-20) negative examples.
1

V4 . o(x)

exp(u; - _
softmax: y = — P p(u:

1 + exp(—x)
log WYglexp(ue - vi) |

1+

0.5+

K
Negative sampling: y = —log(o(u; - v.)) — E:pw loglo(—u; - v;
J~P(w) J

i=1

Skip-gram with negative sampling (SGNS)

Key idea: Convert the V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, ¢), we don't predict ¢ among all the words in the
vocabulary. Instead, we predict (¢, ¢) is a positive pair, and (, ¢’) is a negative pair for a
small number of sampled ¢’

positive examples + negative examples - -

t C t c t c y = —log(o(u; - ve)) = D Ejp(u)log(a(—u; - v;))
apricot tablespoon apricot aardvark apricot seven 1=1

apricot of apricot my apricot forever P(w): sampling according to

apricot jam apricot where apricot dear the frequency of words

apricot a apricot coaxial apricot if

Similar to binary logistic regression, but we need to
optimize and together.

Py=1]tc)=0c(u-ve) py=0[t, c%)=1—0(u;"veo)= 0(—ut - veo)

Understanding SGNS

K
y = —log(o(Z Lj~P(w) log(o(—ut - v;))

=1

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in for every (¢, c¢) pair?

(a) Kd
(b) 2Kd
(c) (K+1)d

(d) (K+2)d .
The answer is (d).

We need to calculate gradients with respectto u;and (K+ 1) v
(one positive and K negatives).

Continuous Bag of Words (CBOW)

INPUT PROJECTION OUTPUT

w(t-1)
wity] ———» |
\‘ (w(t+1)
;W(t+2)

Skip-gram

INPUT PROJECTION OUTPUT

YT
L= P [Weh—m <] <m,j /-
ora t=1 (W 0)
e \SUM
S w(t)
, / 3 1 X
w(t+1) Vi = — Vit
| 2 B ;
) M m<j<m,j/~0
exp(u’wt : _’t)
Continuous Bag of Words (CBOW) P (w t | {w t+7 }) —

D ey exp(ug - Vi)

FastText: Subword Embeddings

® Similar to Skip-gram, but break words into n-grams with n =3 to 6
where: 3-grams: <wh, whe, her, ere, re>
4 grams:. <whe, wher, here, ere>
5 grams: <wher, where, here>

6 grams: <where, where>

X
®* Replace U; *V; by Ug -
g2n-grams(w;) V

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

Trained word embeddings
available

® word2vec: https://code.google.com/archive/p/word2avec/

* GloVe: https://nlp.stanford.edu/projects/glove/

* FastText: https://fasttext.cc/

Download pre-trained word vectors

e Pre-trained word vectors. This data is made available under the Public Domain Dedication and License vi.0 whose tull text can be found at:

!]\ I\ , ~ s s SN "N \ . -y . g . « f (1 v/
http://wwwopendatacommons.org/licenses/pddl/1.0/.

o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectars, 822 MB download): glove 6B.zip
o Common Crawl (428 tokens, 19M vocab, uncased, 300d vectors, 175 GB download): glove.42B.300d zip

o Common Crawl (8408 tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove 840B.3004d zip

o Iwitter (28 tweets, 278 tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glovetwitter278 zip

« Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...
Applied to many other languages

Easy to use!

gensim.models KeyedVectors

model KeyedVectors. load_word2vec_format('data/GoogleGoogleNews-vectors—-negative300.bin', binary True)

vector model['easy']

In [17): model.similarity(straightforward’', 'easy’)
Out[17]): 0.5717043285477517
In [18]: model.similarity('simple’, 'impossible')

Ouc[ld]: 0.29156160264633707

In [19]: model.most similar('simple’)

Out(l19): [('straightforward', 0.7460169196128845),
('Simple’, 0.7108174562454224),
('uncomplicated’, 0.6297484636306763),
('simplest’, 0.6171397566795349),

('easy’', 0.5990299582481384),

('fairly straightforward', 0.5893306732177734),
('deceptively simple', 0.5743066072463989),
('simpler’', 0.5537199378013611),

('simplistic’', 0.5516539216041565),
('disarmingly simple', 0.5365327000617981)]

Evaluating word embeddings

Extrinsic vs intrinsic evaluation

Extrinsic evaluation t
®* Let's plug these word embeddings into a real NLP { ML model]
system and see whether this improves performance
0.31 0.01 1.87 -3.17 1.23
® Could take a long time but still the most important “OTZS"‘OQ”T ‘OT'°3’ (“%'18) ‘1{"9’
evaluation metric I don’t like this movie

Intrinsic evaluation

e Evaluate on a specific/intermediate subtask

e Fastto compute

e Not clear if it really helps downstream tasks

Extrinsic evaluation

. =
L/}

t
[ML model]
0.31 0.01 1.87 -3.17 1.23
(-0.28)(-0.91) (0.03) (-0.18) (1.59)

f ! ! ! !

I don’t like this movie

A straightforward solution: given an input sentence X1, X2, . . .,
Xn

Instead of using a bag-of-words model, we can compute VeC(X) = e(Xx1)+ e(x2)+ ...+
e(Xn)

And then train a logistic regression classifier on vec(x) as we did beforel!

There are much better ways to do this e.g., take word
embeddings as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353
353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

mmm
tiger 71.35

tiger tlger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1231

stock jaguar 0.92

Cosine similarity:

u; -u,

COStU;. U,) = .
ostun %) = 1l < Nlwlla

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 56.5 71.5 71.0 53.6 34.7
SVD-L 6B | 657 727 75.1 56.5 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 62.8 652 69.7 581 372
GloVe 6B | 658 727 77.8 539 38.1
SVD-L 42B| 740 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 754 59.4 455

SG: Skip-gram

Intrinsic evaluation: word analogy

Word analogy test: a : a* :: b : b*
b= arg max cos(e(w), e(a@“) —e(a) +

e(b))

w2V

semantic syntactic
Chicago:lllinois Philadelphia: ? bad:worst cool: ?

More examples at

http://download.tensorflow.org/data/questions-words.txt Metric: accuracy

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 53.2
HPCA 100 1.6B | 42 164 10.8
GloVe 100 1.6B | 67.5 543 60.3
SG 300 1B | 61 61 61
CBOW 300 1.6B | 16.1 526 36.1
vLBL 300 1.5B | 542 64.8 60.0
ivLBL 300 1.5B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 70.3
SVD 300 6B | 63 81 173
SVD-S 300 6B | 36.7 46.6 42.1
SVD-L 300 6B | 56.6 63.0 60.1
CBOW' 300 6B | 63.6 674 65.7
SGf 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 67.0 717
CBOW 1000 6B | 57.3 689 63.7
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 384 582 492
GloVe 300 42B | 819 69.3 75.0

http://download.tensorflow.org/data/questions-words.txt

