
AIE1007: Natural Language Processing

L5: Word Embeddings II

Autumn 2024

Word

embeddings

Count-based approaches

• Used since the 90s

• Sparse word-word co-occurrence PPMI matrix

• Decomposed with SVD

Prediction-based approaches

• Formulated as a machine learning problem

• Word2vec (Mikolov et al., 2013)

• GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)

“Similar words occur in similar contexts”

Goal: represent words as short (50-300

dimensional) & dense (real-valued) vectors

Word embeddings: the learning

problem
Learning vectors from text for representing words

• Input: a large text corpus, vocabulary V,

vector dimension d (e.g., 300)

• Output:

vca t

0
—0.224

—
0.2900.27

6

0.130
= B C

@ A

0
—0.124

—
0.2000.32

9

0.430
vdog = B C

@ A

vthe

0
0.234

0.23

9—
0.199

0.266
= B C

@ A vlanguage

0
0.290

0.76

20.98

2

—0.441
= B C

@ A

f : V ! Rd

Each coordinate/dimension of the vector

doesn’t have a particular interpretation

Word embeddings

• Basic property: similar words have similar vectors

word w*= “sweden”

arg max cos(e(w),
e(w⇤))

w2V

cos(u, v) ranges between -1 and 1

Word2vec: How does it work?

word2vec

•
•

(Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

(Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

Skip-gramContinuous Bag of Words (CBOW)

Thomas Mikolov

Skip-gram

A classification

problem!

•
•
•

Assume that we have a large corpus w1, w2, …, wT ∈ V

Key idea: Use each word to predict other words in its context

Context: a fixed window of size 2m (m = 2 in the example)

P(b ∣ a) = given the center word is

, what is the probability that is a

context word?

P(⋅ ∣ a) is a probability distribution

defined over V: ∑ P(w ∣ a) = 1

w∈V

We are going to define

this distribution soon!

Our goal is to find parameters that can maximize

P(problems ∣ into) × P(turning ∣ into) × P(banking ∣ into) × P(crises ∣ into) × P(turning ∣ banking) × P(into ∣ banking) × P(crises ∣ banking) × P(as ∣ banking)…

Convert into training data:

(into, problems)

(into, turning)

(into, banking)

(into, crises)

(banking, turning)

(banking, into)

(banking, crises)

(banking, as)

…

Skip-gram

Skip-gram: objective function

Y Y
L(✓) = P (w t + j | wt;

✓)

t = 1 —m ≤ j ≤ m , j /= 0

• For each position t = 1,2,…T, predict context words within context size m,

given center word wt:

all the parameters to be optimized

T

• It is equivalent to minimizing the (average) negative log likelihood:

J(✓) =

—

log L(✓) = —
1 1

T

T

TX X

t = 1 —
m ≤ j ≤ m , j /= 0

log P
(w

t +
j

t| w ;
✓)

How to define P(wt+j ∣
wt; θ)?

• Use two sets of vectors for each word in the vocabulary

ua ∈ ℝd: vector for center word

vb ∈ ℝd: vector for context word

, ∀a ∈ V

, ∀b ∈ V

• Use inner product ua ⋅ vb to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

exp(uw t · vw t + j)
P (w t + j | wt) = P

k2V exp(uw t ·
v k)

Recall that P(⋅ ∣ a) is a probability

distribution defined over V…

… vs multinominal logistic

regression

•

•

Essentially a |V|-way classification problem

t +

j
tP (w | w)

=

exp(uw t · vw t + j)P
k2V t

exp(uw · v k) If we fix uw , it is reduced to a multinomial
t

logistic regression problem.

• However, since we have to learn both and

together, the training objective is non-convex.

P(y = c | x) =
exp(wc ⋅ x + bc)

∑ m

j=1
exp(wj ⋅ x + bj)

Multinomial logistic

regression:

… vs multinominal logistic

regression

• It is hard to find a global minimum

• But can still use stochastic gradient descent to optimize :

✓(t+1) = ✓(t) —
⌘∇✓J(✓)

Important note

• In this formulation, we don’t care about the classification task itself like we do for

the logistic regression model we saw previously.

• The key point is that the parameters used to optimize this training objective—

when the training corpus is large enough—can give us very good representations

of words (following the principle of distributional hypothesis)!

How many parameters in this

model?

How many parameters does this model have (i.e. what is size of)?

(a) d|V|

(b) 2d|V|

(c) 2m|V|

(d) 2md|V|

d = dimension of each vector

The answer is (b).

Each word has two d-dimensional vectors, so it is 2 × | V | × d.

word2vec formulation

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window,

e.g., P(dog ∣ dog) should be low. If we use one set of vectors only,

it essentially needs to minimize udog ⋅ udog..

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just uw but you can

also concatenate the two vectors..

How to train this model?

• To train such a model, we need to compute
the vector gradient r✓J(✓) = ?

• Remember that

model parameters, in one vector.

represents all 2d | V
|

Vectorized gradients

@
x

@f
=

f (x) = x · a

x, a 2
Rn

@f
 @
f

@f
 @
f

@x @x1 @x2

 @xn

= [, ,. ..,]

f = x1a1 + x2a2 + . . . +

xnan

Vectorized gradients: exercises

(a)

(b) exp(w ⋅ x)

(c) exp(w ⋅ x)w

(d)

The answer is (c).

∂

∂xi

=
exp(∑ n

k=1 i iw x)

∂xi

= exp(
n

∑
k=1

wixi)wi

Let f = exp(w ⋅ x), what is the value of
∂f

?
∂x

w, x ∈ ℝn

Let’s compute gradients for

word2vec

Consider one pair of center/context words (t, c):

y = —
log

✓

P
exp(ut · v c)

k2V exp(ut · v k)

◆

We need to compute the gradient of with respect to

ut and vk, ∀k ∈ V

Let’s compute gradients for

word2vec
y = —
log

t cexp(u · v)
✓ ◆

P
k2V exp(ut · v k)

@
y@u
t

y = — log(exp(ut · vc)) +
log(

X

k2V

exp(ut · vk))

= —u t · v c + log(
X

k2V

t kexp(u · v))

@u
t

@(—u t · vc) @(log
P

exp(ut · vk))
= + k2V

@ut

exp(ut·vk)@
P

k 2 V

@u
t

= —v c + P
k2V exp(ut · v k)

= —v c +

P
k2V exp(ut · v k) ·

v
k

P
k2V

c= —v +
X

k2V

exp(ut · vk)

exp(ut · vk)
P

k 02V exp(ut · vk 0

)

v k

exp(uw t · vw t + j)
P (w t + j | wt) = P

k2V exp(uw t ·
v k)

Recall that

= —vc +
X

k2V

P (k |
t)vk

Gradients for word2vec

What about context vectors?

@
y@v

k

=

See assignment 2 :)

(
t(P (k | t) — 1) u k =

c P (k | t)ut k /=

c

y = —
log

✓

P
exp(ut · v c)

k2V exp(ut · v k)

◆

Overall algorithm

•

•

•

, context size mInput: text corpus, embedding size d, vocabulary

Initialize ui, vi randomly ∀i ∈ V

Run through the training corpus and for each training instance (t, c):

Q: Can you think of any issues with this algorithm?

• Update t tu ← u — ⌘
@y @

u
t

@y

@u
t

= —vc +
X

P (k |
t)vk

k2V

Convert the training data into:

(into, problems)

(into, turning)

(into, banking)

(into, crises)

(banking, turning)

(banking, into)

(banking, crises)

(banking, as)

…

• Update k k
@
v

k

@y
v ← v — ⌘ , ∀k ∈
V @

v
k

(
@y (P (k | t) — 1)
u

=

t k =

c k

/= c

P (k |
t)u

t

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update vk with

all the words in the vocabulary! This is very expensive computationally.

Negative sampling: instead of considering all the words in V, let’s randomly sample

(5-20) negative examples.

softmax:

Negative sampling:

y = —
log

exp(ut ·
v c)

✓ ◆

P
k2V exp(ut · v k)

@y
=

@vk

(

t(P (k | t) — 1) u k =

c P (k | t)ut k /=

c

σ(x)
=

1

1 + exp(—x)

Skip-gram with negative sampling (SGNS)

Key idea: Convert the V | -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don’t predict c among all the words in the

vocabulary. Instead, we predict (t, c) is a positive pair, and (t, c’) is a negative pair for a

small number of sampled c’.

P(w): sampling according to

the frequency of words

Similar to binary logistic regression, but we need to

optimize and together.

P (y = 1 | t, c) = σ(ut · vc) p(y = 0 | t, c0) = 1 — σ(ut · vc0) = σ(—u t · vc0)

Understanding SGNS

In skip-gram with negative sampling (SGNS), how many parameters need to be

updated in

(a) Kd

(b) 2Kd

for every (t, c) pair?

(c) (K + 1)d

(d) (K + 2)d
The answer is (d).

We need to calculate gradients with respect to ut and (K + 1) vi
(one positive and K negatives).

Continuous Bag of Words (CBOW)

L(✓) =

TY

t = 1

P
(w

t t + j| {w }, —m ≤ j ≤ m, j /=

0)

tv̄ =
1

2

m

X

—
m ≤ j ≤ m , j /= 0

vt +

j

Skip-gram Continuous Bag of Words (CBOW)

FastText: Subword Embeddings

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

• Similar to Skip-gram, but break words into n-grams with n = 3 to 6

where: 3-grams: <wh, whe, her, ere, re>

4 grams: <whe, wher, here, ere>

5 grams: <wher, where, here>

6 grams: <where, where>

X

g2n - grams(w i)

ug ·
v j

• Replace u i · v j by

Trained word embeddings

available
• word2vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

Differ in algorithms, text corpora, dimensions, cased/uncased…

Applied to many other languages

Easy to use!

Evaluating word embeddings

Extrinsic evaluation

• Let’s plug these word embeddings into a real NLP

system and see whether this improves performance

• Could take a long time but still the most important

evaluation metric I

0.31 0.01
(−0.28) (−0.91)

1.87
(0.03)

−3.17 1.23
(−0.18) (1.59)

don’t like this movie

ML model

Extrinsic vs intrinsic evaluation

Intrinsic evaluation

•

•

•

Evaluate on a specific/intermediate subtask

Fast to compute

Not clear if it really helps downstream tasks

I

0.31 0.01 1.87
(−0.28) (−0.91) (0.03)

−3.17 1.23
(−0.18) (1.59)

don’t like this movie

ML model

Extrinsic evaluation

A straightforward solution: given an input sentence x1, x2, . . . ,
xn

Instead of using a bag-of-words model, we can compute vec(x) = e(x1) + e(x2) + .. . +

e(xn)

And then train a logistic regression classifier on vec(x) as we did before!

There are much better ways to do this e.g., take word

embeddings as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353

353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Cosine similarity:

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

SG: Skip-gram

Intrinsic evaluation: word similarity

Intrinsic evaluation: word analogy

semantic

Chicago:Illinois Philadelphia: ? bad:worst cool: ?

syntactic

More examples at

http://download.tensorflow.org/data/questions-words.txt Metric: accuracy

Word analogy test: a : a* :: b : b*

b⇤ = arg max cos(e(w), e(a⇤) — e(a) +
e(b))

w2V

http://download.tensorflow.org/data/questions-words.txt

