

AIE1007: Natural Language Processing

L5: Word Embeddings II

Autumn 2024

Word embeddings

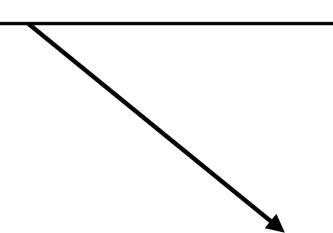
Goal: represent words as **short** (50-300 dimensional) & **dense** (real-valued) vectors

Count-based approaches

- Used since the 90s
- Sparse word-word co-occurrence PPMI matrix
- Decomposed with SVD

Prediction-based approaches

- Formulated as a machine learning problem
- Word2vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)



Underlying theory: Distributional Hypothesis (Firth, '57) "Similar words occur in similar contexts"

Word embeddings: the learning problem

Learning vectors from text for representing words

- **Input**: a large text corpus, vocabulary *V*, vector dimension d (e.g., 300)
- Output: f:V! R^d

Each coordinate/dimension of the vector doesn't have a particular interpretation

$$v_{\text{cat}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0.130 & 0 & 0.430 \\ 0.290 & 0 & 0.200 \\ 0 & 0 & 0 & 0 \\ 0 & 0.234 & 0.266 \\ 0 & 0.23 & 0 & 0.290 \\ 0.199 & 0.199 & 0 & 0 \\ 0 & 0.199 & 0 & 0 \\ 0 & 0.124 & 0.430 \\ 0 & 0.200 & 0 \\ 0 & 0.200 & 0 \\ 0 & 0.290 & 0 \\ 0 & 0.290 & 0 \\ 0 & 0.76 & 0 \\ 0 & 0.98 & 0 \\ 0 & 0.199 & 0 & 0 \\ 0 & 0.199 &$$

Word embeddings

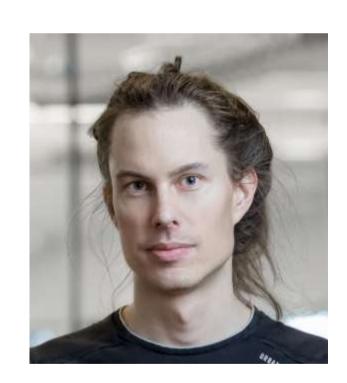
Basic property: similar words have similar vectors

word	Cosine distance
norway	0.760124
denmark	0.715460
finland	0.620022
switzerland	0.588132
belgium	0.585835
netherlands	0.574631
iceland	0.562368
estonia	0.547621
slovenia	0.531408
	denmark finland switzerland belgium netherlands iceland estonia

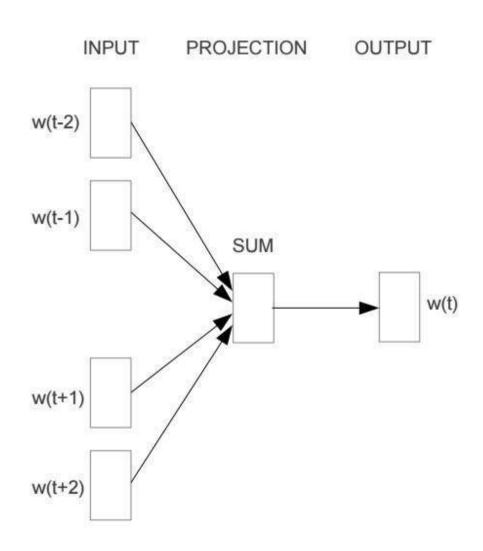
Word2vec: How does it work?

word2vec

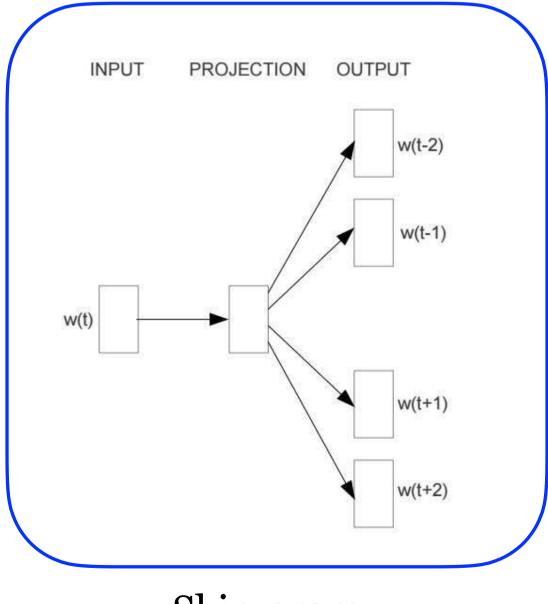
- (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space
- (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality



Thomas Mikolov



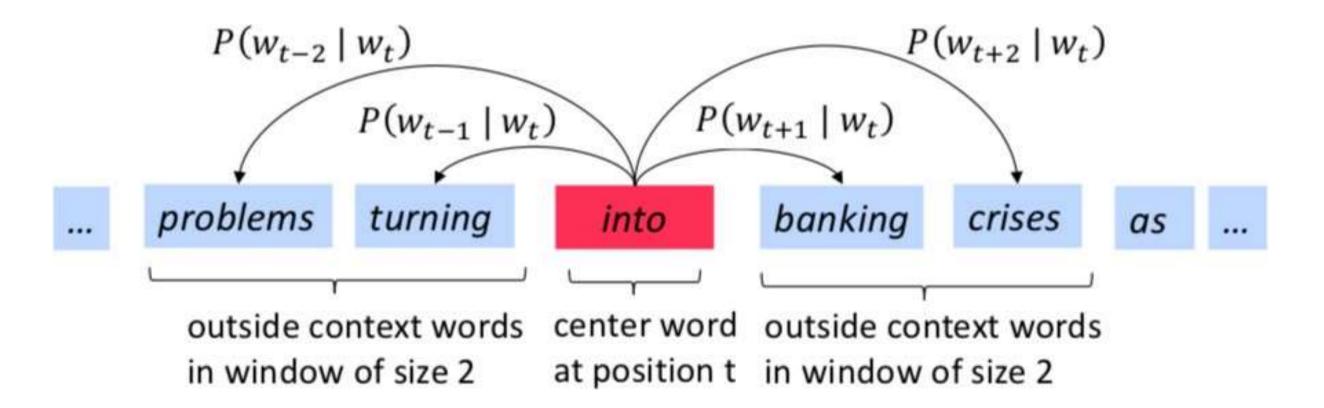
Continuous Bag of Words (CBOW)



Skip-gram

Skip-gram

- Assume that we have a large corpus $w_1, w_2, ..., w_T \in V$
- Key idea: Use each word to predict other words in its context
- Context: a fixed window of size 2m (m = 2 in the example)



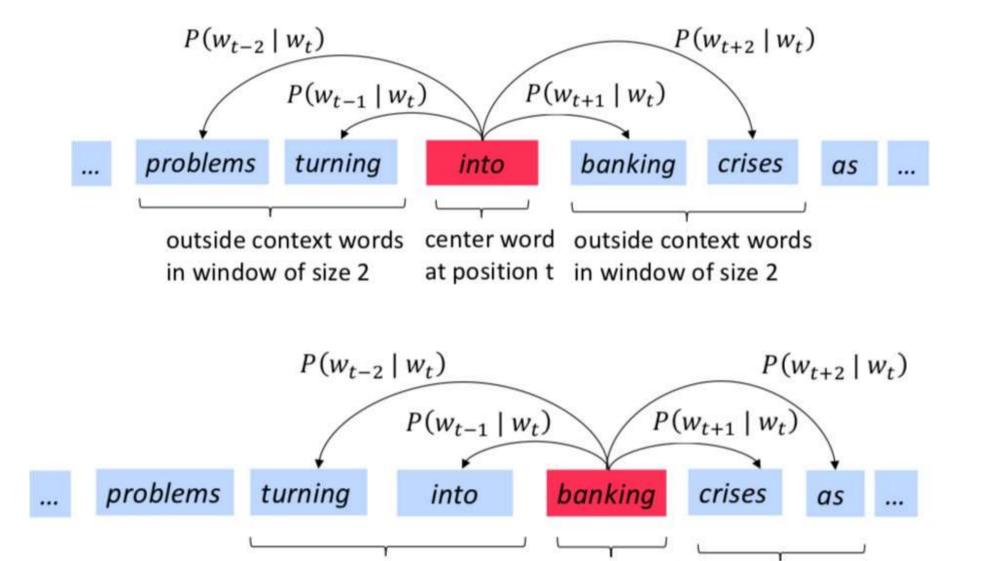
A classification problem!

 $P(b \mid a)$ = given the center word is , what is the probability that is a context word?

 $P(\cdot \mid a)$ is a probability distribution defined over V: $\sum_{w \in V} P(w \mid a) = 1$

We are going to define this distribution soon!

Skip-gram



outside context words center word outside context words

at position t in window of size 2

```
Convert into training data:
(into, problems)
(into, turning)
(into, banking)
(into, crises)
(banking, turning)
(banking, into)
(banking, crises)
(banking, as)
```

in window of size 2

Skip-gram: objective function

• For each position t = 1,2,...T, predict context words within context size m, given center word w_t :

all the parameters to be optimized
$$L(\sqrt{}) = V \quad P(W_{t+j} \mid W_t; t=1 \quad -m \leq j \leq m, j \neq 0)$$

• It is equivalent to minimizing the (average) negative log likelihood:

$$J(\checkmark) = \frac{1}{T} \log L(\checkmark) = -\frac{1}{T} X^{T} X$$

$$\lim_{t=1 \ m \le j \le m, j/=0} \log P \qquad \lim_{t+} |W_{t};$$

$$(W \qquad j \qquad \checkmark)$$

How to define $P(w_{t+j} \mid w_t; \vartheta)$?

Use two sets of vectors for each word in the vocabulary

 $\mathbf{u}_a \in \mathbb{R}^d$: vector for center word , $\forall a \in V$

 $\mathbf{v}_b \in \mathbb{R}^d$: vector for context word , $\forall b \in V$

• Use inner product $\mathbf{u}_a \cdot \mathbf{v}_b$ to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

$$P(w_{t+j} \mid w_t) = \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{k2V \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_t})}$$

Recall that $P(\cdot \mid a)$ is a probability distribution defined over V...

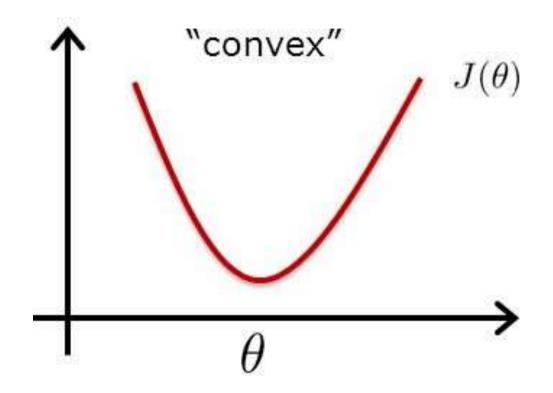
... vs multinominal logistic regression

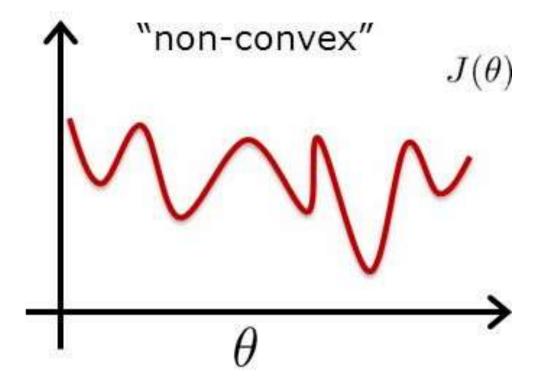
Multinomial logistic regression:
$$P(y = c \mid x) = \frac{\exp(\mathbf{w}_c \cdot \mathbf{x} + b_c)}{\sum_{j=1}^{m} \exp(\mathbf{w}_j \cdot \mathbf{x} + b_j)}$$

$$P(W_{t+} \mid W) = \sum_{j} \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

- Essentially a |V|-way classification problem
- If we fix \mathbf{u}_{w_t} , it is reduced to a multinomial logistic regression problem.
- However, since we have to learn both and together, the training objective is non-convex.

... vs multinominal logistic regression





- It is hard to find a global minimum
- But can still use stochastic gradient descent to optimize :

$$\sqrt{t+1} = \sqrt{t} - 4$$

$$\mathcal{H} \nabla J(\sqrt{t}) = \sqrt{t} - 4$$

Important note

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m < j < m, j \neq 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

- In this formulation, we don't care about the classification task itself like we do for the logistic regression model we saw previously.
- The key point is that the *parameters* used to optimize this training objective—when the training corpus is large enough—can give us very good representations of words (following the principle of distributional hypothesis)!

How many parameters in this model?

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m < j < m, j \neq 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

How many parameters does this model have (i.e. what is size of)?

- (a) d|V|
- (b) 2*d*|*V*|
- (c) 2m|V|
- (d) 2md|V|

d = dimension of each vector

The answer is (b).

Each word has two d-dimensional vectors, so it is $2 \times |V| \times d$.

word2vec formulation

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m < j < m, j \neq 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window, e.g., $P(\text{dog} \mid \text{dog})$ should be low. If we use one set of vectors only, it essentially needs to minimize $\mathbf{u}_{\text{dog}} \cdot \mathbf{u}_{\text{dog}}$.

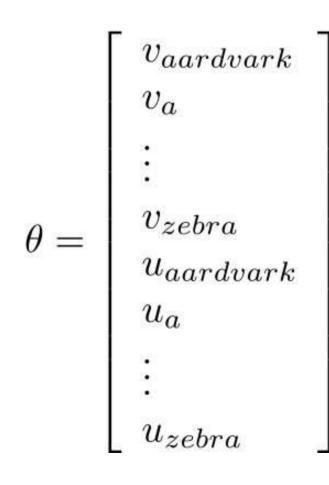
Q: Which set of vectors are used as word embeddings?

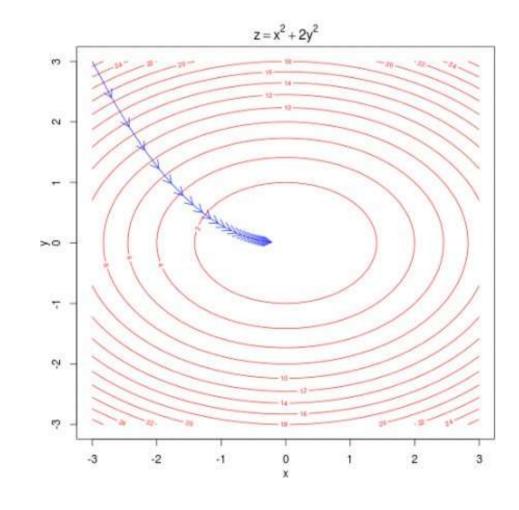
A: This is an empirical question. Typically just \mathbf{u}_w but you can also concatenate the two vectors..

How to train this model?

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

- To train such a model, we need to compute the vector gradient $r_{\checkmark}J(\checkmark)=?$
- Remember that represents all 2d | V model parameters, in one vector.





Vectorized gradients

$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{a}$$

$$\mathbf{x}, \mathbf{a} 2$$

$$\mathbf{R}^{n}$$

$$\mathbf{x}$$

$$f = x_{1}a_{1} + x_{2}a_{2} + \dots + x_{n}a_{n}$$

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}_{1}'} & \frac{\partial f}{\partial \mathbf{x}_{2}'} & \dots & \frac{\partial f}{\partial \mathbf{x}_{n}'} \\ \frac{\partial f}{\partial \mathbf{x}_{n}'} & \frac{\partial f}{\partial \mathbf{x}_{n}'} & \dots & \frac{\partial f}{\partial \mathbf{x}_{n}'} \end{bmatrix}$$

Let
$$f = \exp(\mathbf{w} \cdot \mathbf{x})$$
, what is the value of $\frac{\partial f}{\partial \mathbf{x}}$? $\mathbf{w}, \mathbf{x} \in \mathbb{R}^n$

- (a)
- (b) $exp(\mathbf{w} \cdot \mathbf{x})$
- (c) $exp(\mathbf{w} \cdot \mathbf{x})\mathbf{w}$
- (d)

The answer is (c).

$$\frac{\partial}{\partial x_i} = \frac{\exp(\sum_{k=1}^n w_i x_i)}{\partial x_i} = \exp(\sum_{k=1}^n w_i x_i) w_i$$

Let's compute gradients for

$$VORD C$$

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m < j < m, j \neq 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Consider one pair of center/context words (t, c):

$$y = - \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_c)}{\log \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

We need to compute the gradient of with respect to

$$\mathbf{u}_t$$
 and \mathbf{v}_k , $\forall k \in V$

Let's compute gradients for

$\begin{array}{lll} \text{word2} & \text{pc}_{xp(\mathbf{u}_t \cdot \mathbf{v}_c)} \\ \text{log} & \text{pc}_{k2V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k) \\ \text{log} & \text{pc}_{k2V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k) \\ \text{y} & = -\log(\exp(\mathbf{u}_t \cdot \mathbf{v}_c)) + \exp(\mathbf{u}_t \cdot \mathbf{v}_k) \\ \text{log} & \text{pc}_{k2V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k) \\ \text{pc}$

Recall that

$$P(w_{t+j} \mid w_t) = \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_t})}$$

$$v_k)$$

k2V

$$\frac{@}{@\mathbf{u}} = \frac{@(-\mathbf{u}_t \cdot \mathbf{v}_c)}{@\mathbf{u}} + \frac{@(\log^{\mathsf{P}} \exp(\mathbf{u}_t \cdot \mathbf{v}_k))}{@\mathbf{u}_t}$$

$$= -\mathbf{v}_c + \frac{\mathsf{P} \frac{@^{\mathsf{P}} k_2 v \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{@\mathbf{u}}}{k_2 v \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

$$= -\mathbf{v}_c + \frac{\mathsf{P} \exp(\mathbf{u}_t \cdot \mathbf{v}_k) \cdot k}{k_2 v \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

$$= -\mathbf{v}_c + \frac{\mathsf{X}}{k_2 v} \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_k) \cdot k}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

$$= -\mathbf{v}_c + \frac{\mathsf{X}}{k_2 v} \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

$$= -\mathbf{v}_c + \frac{\mathsf{X}}{k_2 v} \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

$$= -\mathbf{v}_c + \frac{\mathsf{X}}{k_2 v} \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

Gradients for word2vec

What about context vectors?

$$\frac{@}{@\mathbf{v}} = \begin{cases} (P(k \mid t) - 1)\mu & k = \\ cP(k \mid t)\mathbf{u}_{t} & k \neq \\ c \end{cases}$$

$$y = -\frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_c)}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

See assignment 2:)

Overall algorithm

- Input: text corpus, embedding size d, vocabulary , context size m
- Initialize \mathbf{u}_i , \mathbf{v}_i randomly $\forall i \in V$
- Run through the training corpus and for each training instance (t, c):

Q: Can you think of any issues with this algorithm?

Convert the training data into:
(into, problems)
(into, turning)
(into, banking)
(into, crises)
(banking, turning)
(banking, into)
(banking, crises)
(banking, as)

. . .

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update \mathbf{v}_k with all the words in the vocabulary! This is very expensive computationally.

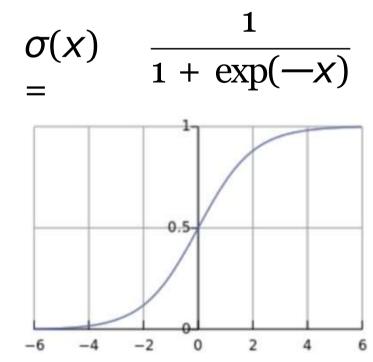
$$\frac{\partial y}{\partial \mathbf{u}_{t}} = -\mathbf{v}_{c} + \sum_{k \in V} P(k \mid t) \mathbf{v}_{k}$$

$$\frac{\partial y}{\partial \mathbf{v}_{k}} = \begin{pmatrix} (P(k \mid t) - 1) \mathbf{\mu} & k = \\ c P(k \mid t) \mathbf{u}_{t} & k \neq \\ C \end{pmatrix}$$

Negative sampling: instead of considering all the words in V, let's randomly sample (5-20) negative examples.

softmax:
$$y = -\frac{\sqrt{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}}{\log |\mathbf{v}_t| \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}$$

Negative sampling:
$$y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum_{i=1}^K \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$$



Skip-gram with negative sampling (SGNS)

Key idea: Convert the |V|-way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don't predict c among all the words in the vocabulary. Instead, we predict (t, c) is a positive pair, and (t, c') is a negative pair for a small number of sampled c'.

positive examples +		r	negative examples -			K
t	С	t	c	t	c	$y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$
apricot	tablespoon	apricot	aardvark	apricot	seven	$i{=}1$
apricot	of	apricot	my	apricot	forever	P(w): sampling according to
apricot	jam	apricot	where	apricot	dear	the frequency of words
apricot	a	apricot	coaxial	apricot	if	and noquency of words

Similar to **binary logistic regression**, but we need to optimize and together.

$$P(y = 1 \mid t, c) = \sigma(\mathbf{u}_t \cdot \mathbf{v}_c) \quad p(y = 0 \mid t, c^0) = 1 - \sigma(\mathbf{u}_t \cdot \mathbf{v}_{c^0}) = \sigma(-\mathbf{u}_t \cdot \mathbf{v}_{c^0})$$

Understanding SGNS

$$y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum_{i=1}^K \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$$

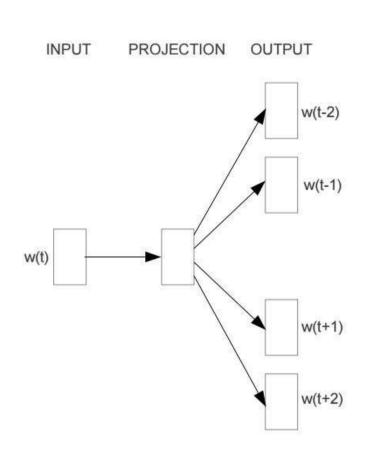
In skip-gram with negative sampling (SGNS), how many parameters need to be updated in for every (t, c) pair?

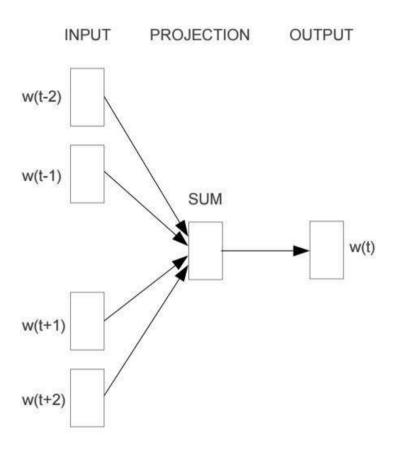
- (a) *Kd*
- (b) 2*Kd*
- (c) (K+1)d
- (d) (K + 2)d

The answer is (d).

We need to calculate gradients with respect to \mathbf{u}_t and $(K + 1) \mathbf{v}_i$ (one positive and K negatives).

Continuous Bag of Words (CBOW)





Skip-gram

Continuous Bag of Words (CBOW)

$$L(\sqrt{}) = \begin{cases} \sqrt{T} \\ P \\ t = 1 \end{cases} (W \quad 0) \qquad m \leq j \leq m, j \neq 0$$

$$\overline{\mathbf{v}}_{t} = \frac{1}{2} \qquad \mathbf{v}_{t+1}$$

$$m \leq j \leq m, j \neq 0$$

$$P(w_t \mid \{w_{t+j}\}) = \frac{\exp(\mathbf{u}_{w_t} \cdot \bar{\mathbf{v}}_t)}{\sum_{k \in V} \exp(\mathbf{u}_k \cdot \bar{\mathbf{v}}_t)}$$

FastText: Subword Embeddings

• Similar to Skip-gram, but break words into n-grams with n = 3 to 6

```
where: 3-grams: <wh, whe, her, ere, re>
4 grams: <whe, wher, here, ere>
5 grams: <wher, where, here>
6 grams: <where, where>

X
Replace u<sub>i</sub> • v<sub>j</sub> by u<sub>g</sub> •
```

g2n-grams $(w_i) V_i$

Trained word embeddings available

- word2vec: https://code.google.com/archive/p/word2vec/
- GloVe: https://nlp.stanford.edu/projects/glove/
- FastText: https://fasttext.cc/

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby <u>script</u> for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased... Applied to many other languages

Easy to use!

```
from gensim.models import KeyedVectors
# Load vectors directly from the file
model = KeyedVectors.load_word2vec_format('data/GoogleGoogleNews-vectors-negative300.bin', binary=True)
# Access vectors for specific words with a keyed lookup:
vector = model['easy']
```

Evaluating word embeddings

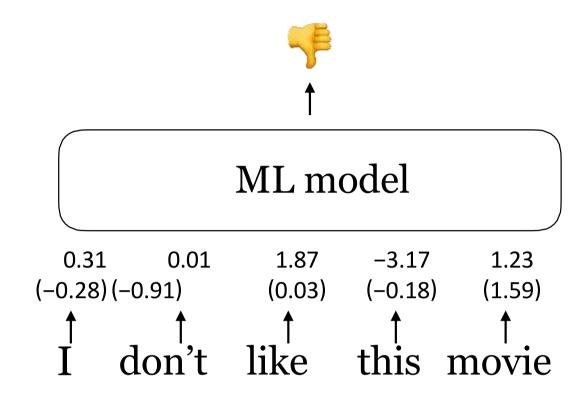
Extrinsic vs intrinsic evaluation

Extrinsic evaluation

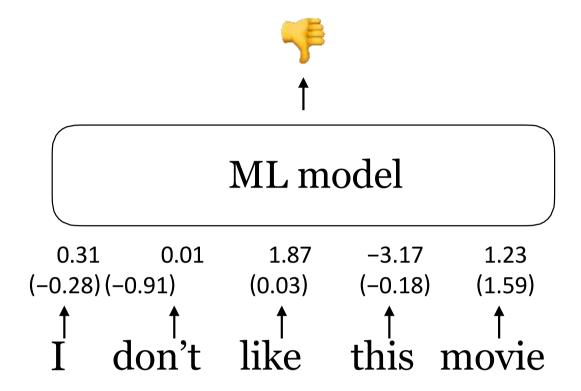
- Let's plug these word embeddings into a real NLP system and see whether this improves performance
- Could take a long time but still the most important evaluation metric

Intrinsic evaluation

- Evaluate on a specific/intermediate subtask
- Fast to compute
- Not clear if it really helps downstream tasks



Extrinsic evaluation



A straightforward solution: given an input sentence X_1, X_2, \dots, X_n

Instead of using a bag-of-words model, we can compute $vec(x) = \mathbf{e}(x_1) + \mathbf{e}(x_2) + \dots + \mathbf{e}(x_n)$

And then train a logistic regression classifier on vec(x) as we did before!

There are much better ways to do this e.g., take word embeddings as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353 353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word 1	Word 2	Human (mean)
tiger	cat	7.35
tiger	tiger	10
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62
stock	CD	1.31
stock	jaguar	0.92

Cosine similarity:

$$\cos(\boldsymbol{u}_i, \boldsymbol{u}_j) = \frac{\boldsymbol{u}_i \cdot \boldsymbol{u}_j}{||\boldsymbol{u}_i||_2 \times ||\boldsymbol{u}_j||_2}.$$

Metric: Spearman rank correlation

Intrinsic evaluation: word similarity

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	<u>72.7</u>	75.1	56.5	37.0
CBOW [†]	6B	57.2	65.6	68.2	57.0	32.5
SG [†]	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	<u>65.8</u>	<u>72.7</u>	<u>77.8</u>	53.9	<u>38.1</u>
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

SG: Skip-gram

Intrinsic evaluation: word analogy

```
Word analogy test: a : a^* :: b : b^*
```

$$b^{\leftarrow} = \arg \max \cos(e(w), e(a^{\leftarrow}) - e(a) + e(b))$$

semantic

syntactic

Chicago: Illinois Philadelphia: ?

bad:worst cool: ?

GloVe	100	1.6B	<u>67.5</u>	<u>54.3</u>	<u>60.3</u>
SG	300	1B	61	61	61
CBOW	300	1.6B	16.1	52.6	36.1
vLBL	300	1.5B	54.2	<u>64.8</u>	60.0
ivLBL	300	1.5B	65.2	63.0	64.0
GloVe	300	1.6B	80.8	61.5	<u>70.3</u>
SVD	300	6B	6.3	8.1	7.3
SVD-S	300	6B	36.7	46.6	42.1
SVD-L	300	6B	56.6	63.0	60.1
CBOW [†]	300	6B	63.6	<u>67.4</u>	65.7
SG [†]	300	6B	73.0	66.0	69.1
GloVe	300	6B	77.4	67.0	71.7
CBOW	1000	6B	57.3	68.9	63.7
SG	1000	6B	66.1	65.1	65.6
SVD-L	300	42B	38.4	58.2	49.2
GloVe	300	42R	81 9	69 3	75.0

Size

1.5B

Dim.

100

100

Model

ivLBL

HPCA

Syn.

50.1

Tot.

53.2

Sem.

55.9

More examples at

http://download.tensorflow.org/data/questions-words.txt

Metric: accuracy