
AIE1007: Natural Language Processing

L4: Word Embeddings

Autumn 2024

Lecture plan

• Word embeddings = Vector representations of word meaning

Recommended reading:

JM3 6.2-6.4, 6.6

The big idea: model of meaning focusing on similarity

v =cat

0

B
B@- 0.290A

0.276

- 0.224

0.130

1

C
C

vdog = B

0

B
@- 0.200A

0.329

- 0.124

0.430

1

C
C

vthe =
B 0.266 C

0
0.234

1

B
0.239

C

@ A

0.199

vlanguage =
B

0
0.290

1

0.441

B
@ 0.762

0.982

C
C
A

Each word = a vector
Similar words are “nearby in

the vector space”

(Bandyopadhyay et al. 2022)

How do we represent words in NLP models?

• n-gram models

n

P(w1, w2, ...wn) =
Y

P(wi |wi - 1)
i=1

P (wi |wi- 1) =
C (wi- 1, wi) +↵

C (w)+↵|V |i- 1

• Naive Bayes

P̂(wi | cj) = P Count(wi , cj)+↵

w2V Count(w, cj)+↵|V |

Each word is just a string

or indices wi in the

vocabulary list

cat = the 5th word in V

dog = the 10th word in V

cats = the 118th word in V

string match

• Logistic regression

How do we represent words in NLP models?

• Synonyms: couch/sofa, car/automobile, filbert/hazelnut

• Antonyms: dark/light, rise/fall, up/down

• Some words are not synonyms but they share some

element of meaning

• cat/dog, car/bicycle, cow/horse

• Some words are not similar but they are related

• coffee/cup, house/door, chef/menu

• Affective meanings or connotations:

What do words mean?

SimLex-999

(Osgood et al., 1957)

Need for word meaning in NLP models

• With words, a feature is a word identity (= string)

• Feature 5: `The previous word was “terrible”’

• Requires exact same word to be in the training and testing set

“terrible” ≠ “horrible”

• If we can represent word meaning in vectors:

• The previous word was vector [35, 22, 17, …]

• Now in the test set we might see a similar vector [34, 21, 14, …]

• We can generalize to similar but unseen words!!!

Lexical resources

http:/ /wordnetweb.princeton.edu/
(-) Huge amounts of human

labor to create and maintain

http://wordnetweb.princeton.edu/

Distributional hypothesis

• “The meaning of a word is its use in the language”

• “If A and B have almost identical environments we

say that they are synonyms.”

• “You shall know a word by the company it keeps”

[Wittgenstein PI 43]

[Harris 1954]

[Firth 1957]

Distributional hypothesis
Distributional hypothesis: words that occur in similar contexts

tend to have similar meanings

J.R.Firth 1957

•

•

“You shall know a word by the company it keeps”

One of the most successful ideas of modern

statistical NLP!

These context words will help represent “banking”.

When a word w appears in a text, its context is the set of words that appear

nearby (within a fixed-size window).

Distributional hypothesis

Q: What do you think ‘Ongchoi’ means?

A) a savory snack

B) a green vegetable

C) an alcoholic beverage

D) a cooking sauce

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

Distributional hypothesis

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

You may have seen

these sentences before:
spinachsautéed with garlic over rice

chard stems and leaves are delicious

collard greens and other salty leafty greens

Distributional hypothesis

“Ongchoi”

Ongchoi is a leafty green like spinach, chard or collard greens

How we can do the same thing computationally?

•

•
Count the words in the context of ongchoi

See what other words occur in those contexts

We can represent a word’s context using vectors!

Words and vectors

First solution: Let’s use word-word co-occurrence counts to

represent the meaning of words!

Each word is represented by the corresponding row vector

context words:

4 words to the left +

4 words to the right

Q: What is the dimension

of each such vector?

A: |V|

Most entries are 0s⟹ sparse vectors

Measuring similarity

cos(u,v) =
P |V |

q P |V |

u · v

kukkvk

i=1 uivi

i=1 u
2

i=1 v
2

i i

q P |V |

cos(u,v) =

Q: Why cosine similarity instead of dot product ?

A common similarity metric: cosine of the

angle between the two vectors (the larger,

the more similar the two vectors are)

What is the range of cos(u,v) if u, v are count vectors?

(a) [-1, 1]

(b) [0, 1]

(c) [0, +∞)

(d) (, +∞)

i=1
cos(u,v) = q

P |V | uivi

P |V |i=1 u
2

i

q P |V |
i=1 vi2

The answer is (b). Cosine similarity ranges between -1 and 1 in general. In this model,

all the values of ui, vi are non-negative.

Any issues with this model?

Raw frequency count is a bad representation!

• Frequency is clearly useful; if “pie” appears a lot near “cherry”,

that's useful information.

But overly frequent words like “the”, “ it", or “ they” also appear a lot

near “cherry”. They are not very informative about the context.
•

Solution: use a weighted function instead of raw counts!

Pointwise Mutual Information (PMI):

Do events x and y co-occur more or less than if they were independent?

PMI(x, y) = log
2 P (x)P (y)

P (x, y)
PMI(w = cherry , c = pie) = log

2 P (w = cherry)P (c = pie)

P (w = cherry , c = pie)

Positive Pointwise Mutual Information (PPMI)

•

•
•
•

PMI ranges from to +∞

PMI(w,c) > 0⟹ P(w,c) > P(w)P(c)

PMI(w,c) < 0⟹ P(w,c) < P(w)P(c)

Negative values of PMI are frequently not reliable unless the corpus is enormous

• Unclear whether it is possible to evaluate scores of “unrelatedness” with

human judgements

• A simple fix: replace all the negative PMI values by 0s

PPMI(w, c) = max
✓log

2 P (w)P (c)
,0P (w, c) ◆

PPMI - A running example

Assume that we have a text corpus of 1M tokens, we use 4 words before and 4

words after as context c for each word w, what is N (the denominator for

computing these probabilities) approximately?

(a)1M

(b)4M

(c)8M

(d) not enough information

The answer is (c). For every word wi in the corpus, we need to collect 8 pairs (wi,wi+j), for j = -4, -3, -2, -1, 1, 2, 3, 4.

PPMI - A running example

PMI(cherry,pie) = log2(0.0377/0.0415/0.0437) = 4.38

PMI(cherry,result) = log2(0.0008/0.0415/0.0404) = 1.07

PMI(digital,result) = log2(0.0073/0.2942/0.0404) = －0.70

Sparse vs dense vectors

• The vectors in the word-word occurrence matrix are

• Long: vocabulary size

• Sparse: most are 0’s

• Alternative: we want to represent words as short (50-300 dimensional) & dense (real-

valued) vectors

• The basis for modern NLP systems

v =cat

0 1

B
B@- 0.290A

0.276

- 0.224

0.130 C
C

vdog = B

0 1

B
@- 0.200A

0.329

- 0.124

0.430 C
C

vthe =
B 0.266 C

0
0.234

1

B
0.239

C

@ A

0.199

vlanguage =
B

0
0.290

1

0.441

B
@

0.762
C

0.982

C

A

Why dense vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors generalize better than explicit counts (points in real space

vs points in integer space)

• Sparse vectors can’t capture higher-order co-occurrence

• w1 co-occurs with “car”, w2 co-occurs with “automobile”

• They should be similar but they aren’t because “car” and

“automobile” are distinct dimensions

• In practice, they work better!

How to get short dense vectors?

• Count-based methods: Singular value

decomposition (SVD) of count matrix
Singular value decomposition (SVD) of

PPMI weighted co-occurrence matrix

We can approximate the full

matrix by only keeping the top

k (e.g., 100) singular values!

How to get short dense vectors?

• Prediction-based methods:

• Vectors are created by training a classifier to

predict whether a word c (“pie”) is likely to

appear in the context of a word w (“cherry”)

• Examples: word2vec (Mikolov et al., 2013),

Glove (Pennington et al., 2014), FastText

(Bojanowski et al., 2017)
(Baroni et al., 2014)

Also called word embeddings!

• Count-based methods: Singular value

decomposition (SVD) of count matrix

Word2vec and other variants

Word embeddings

= Learned representations from text for representing words

• Output:

v =cat

0

B
B@- 0.290A

0.276

- 0.224

0.130

1

C
C

vdog = B

0

B
@- 0.200A

0.329

- 0.124

0.430

1

C
C

vthe =
B 0.266 C

0
0.234

1

B
0.239

C

@ A

0.199

vlanguage =
B

0
0.290

1

0.441

B
@

0.762
C

0.982

C

A

f : V ! Rd

•
•
•

V: a pre-defined vocabulary

d: dimension of word vectors (e.g. 300)

Text corpora:

•
•
•

Wikipedia + Gigaword 5: 6B tokens

Twitter: 27B tokens

Common Crawl: 840B tokens

• Input: a large text corpora, V, d

Each word is represented by a low-dimensional (e.g., d = 300), real-valued vector

Each coordinate/dimension of the vector doesn’t have a particular interpretation

Trained word embeddings available

• word2vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

Differ in algorithms, text corpora, dimensions, cased/uncased…

Applied to many other languages

Word embeddings

• Basic property: similar words have similar vectors

word w*= “sweden”

argmax cos(e(w), e(w⇤))
w2V

cos(u,v) ranges between -1 and 1

Word embeddings

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

• Basic property: similar words have similar vectors

Word embeddings

• They have some other nice properties too!

b⇤= argmax cos(e(w), e(a⇤) - e(a) + e(b))
w2V

Word analogy test: a : a* :: b : b*vman vwoman ⇡ vking vqueen

vParis 一vFrance ⇡ vRome 一vItaly

Word embeddings

• They have some other nice properties too!

(Mikolov et al, 2013): Exploiting Similarities among Languages for Machine Translation

v(cuatro) ⇡ Wv(four)

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

Embeddings reflect cultural bias!

Next lecture: word2vec

A classification problem!

• Key idea: Use each word to predict other words in its context

• Assume that we have a large corpus w1,w2,… ,wT ∈ V

• Context: a fixed window of size 2m (m = 2 in the example)

