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Lecture plan

New in this class!
• Naive Bayes

Recommended reading:

JM3 4.1-4.6

• Logistic Regression

Recommended reading:

JM3 5.1-5.8

(Including stochastic gradient descent, regularization)



Spam detection
Sentiment analysis

Why text classification?



Why text classification?

James Madison

Authorship attribution
• 1787-1788: 85 anonymous essays try

to convince New York to ratify U.S

Constitution: Jay, Madison, Hamilton.

• 1963: solved by Mosteller and

Wallace using Bayesian methods

Alexander Hamilton

https://en.wikipedia.org/wiki/The_Federalist_Papers

• Authorship of 12 of the

letters in dispute



Why text classification?

Subject category classification



Text classification

Inputs:

• A document d

A set of classes C (m classes)•

Output:

• Predicted class c ∈C for document d

Movie was

terrible

Amazing 

acting

Classify

Classify

Negative

Positive



Rule-based text classification

IF there exists word w in document d such that w in [good, great, extra-ordinary, …], 

THEN output Positive

IF email address ends in [ithelpdesk.com, makemoney.com, spinthewheel.com, …]

THEN output SPAM

+ Can be very accurate (if rules carefully refined by expert)

- Rules may be hard to define (and some even unknown to us!)

- Expensive

- Not easily generalizable

https://github.com/cjhutto/vaderSentiment



Supervised Learning: Let’s use statistics!

Let the machine figure out the best patterns using data

Inputs:

• Set of classes C

• Set of ‘labeled’ documents: {(d1, c1), (d2, c2), . . . , (dn, cn)},

Output:

• Trained classifier, F : 𝒟 → C

di ∈𝒟 , ci ∈C

Key questions:

a) What is the form of F?

b) How do we learn F?



Types of supervised classifiers

Naive Bayes Logistic regression

Support vector machines neural networks



Naive Bayes



Naive Bayes classifier

Simple classification model making use of Bayes rule

• Bayes Rule:

d: document,

P(c | d) =
P (c)P (d | c)

P(d)

: class



Naive Bayes classifier

cM A P = argmaxc2CP(c | d)

P(d | c)P (c)

MAP is “maximum

a posteriori” estimate

= most likely class

d: document, : class

= argmaxc2CP(d | c)P(c)

conditional probability of generating

document d from class

Dropping the denominator

= argmaxc2C P(d)
Bayes’ rule

prior probability of class



How to represent P(d ∣ c)?

Option 1: represent the entire sequence of words

(too many sequences!)P(w1,w2, . . . ,wK|c)

d = w1,w2,…,wK

Option 2: Bag of words

P(w1,w2, . . . ,wK|c) = P(w1 |c)P(w2 |c) . . . P(wK|c)

• Assume position of each word doesn’t matter

• Probability of each word is conditionally

independent of the other words given class



Bag of words (BoW)
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I love this movie! It's sweet, 

but with satirical humor. The 

dialogue is great and the 

adventure scenes are fun... 

It manages to be whimsical 

and romantic while laughing 

at the conventions of the

fairy tale genre. I would 

recommend it to just about 

anyone. I've seen it several 

times, and I'm always happy

to see it again whenever I 

have a friend who hasn't 

seen it yet!
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Predicting with Naive Bayes

We now have:

cM A P = argmaxc2CP (d | c)P (c)

= argmaxc2CP(w1, w2, . . . , wK | c)P(c)
K

= argmaxc2CP (c) Y

i=1

P (wi | c)

cM A P = argmaxc2C logP(c) +

K
X

i= 1

logP(wi | c)
!

Equivalent to



How to estimate probabilities?

Maximum likelihood estimates:

argmaxc2CP(c)

K
Y

i=1

P(wi | c)Given a set of ‘labeled’ documents:

{(d1, c1), (d2, c2), . . . , (dn, cn)}

P̂(wi | cj ) = P Count(wi , cj )

w2V Count(w, cj )

Fraction of times word wi 

appears among all words in

documents of class cj

How many documents are

class cj in the training set
P̂(c ) =j

Count(c )j

n



Data sparsity problem

• What if count(‘fantastic’, positive) = 0?

Implies P(‘fantastic’ | positive) = 0

This sounds

familiar…

argmaxc2CP(c)

K
Y

i=1

P(wi | c)

This term becomes 0

for c = positive



Solution: Smoothing!

Laplace smoothing:

P̂(wi | cj ) = P Count(wi , cj )+↵

w2V Count(w, cj )+↵|V |

• Simple, easy to use

• Effective in practice



Overall process
Input: a set of labeled documents {(di, ci)}

n

A. Compute vocabulary V of all words

B. Calculate P ̂(cj) =

C. Calculate P ̂(wi |cj) =

D. (Prediction) Given document d = (w1, w2, . . . , wK)

i=1

Count(cj)

n

Count(wi, cj) + α

∑
w∈V [Count(w, cj)] + α|V|

cMAP = arg max P ̂(c)∏ P ̂(wi |c)
c

K

i=1

prior - important!

Q. What about words that appear

in the testing set but not in V?

A. We can simply ignore them



A worked example for sentiment analysis



A worked example for sentiment analysis

3. Estimating the conditional probs

4. Scoring the test example



Naive Bayes vs. language models



Naive Bayes vs. language models



Naive Bayes vs. language models



P(w1, w2, . . . ,wK |c) = P(w1 |c)P(w2 |c) . . . P(wK |c)

Each class = a unigram language model!

Since

Naive Bayes vs. language models



• Which class assigns the higher probability to s?
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Naive Bayes vs. language models



• Which class assigns the higher probability to s?
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Naive Bayes: pros and cons

• (+) Very fast, low storage requirements

• (+) Work well with very small amounts of training data

• (+) Robust to irrelevant features

• Irrelevant features cancel each other without affecting results

• (+) Very good in domains with many equally important features

• Decision trees suffer from fragmentation in such cases — especially if little data

• (-) The independence assumption is too strong

• (-) Doesn’t work well when the classes are highly imbalanced

• Potential solutions: complement Naive Bayes (Rennie et al., 2003)



Naive Bayes can use any features!

• In general, Naive Bayes 

can use any set of

features, not just words:

• URLs, email addresses, 

Capitalization, …

• Domain knowledge

crucial to performance

Top features for spam detectionP(d |c) = P( f1 |c)P( f2 |c) . . . P( fK′|c)



Binary naive Bayes

• For tasks like sentiment, word

occurrence seems to be more

important than word frequency.

• The occurrence of the word fantastic

tells us a lot; The fact that it occurs 5

times may not tell us much more

• Solution: clip word count at

1 in every document

Counts can still be 2! Binarization is within-doc!



Logistic Regression



Logistic Regression

• Powerful supervised model

• Baseline approach for many NLP tasks

• Foundation of neural networks

• Binary (two classes) or multinomial (>2 classes)

https://machine-learning.paperspace.com/wiki/logistic-regression



Generative vs discriminative models

• Naive Bayes is a generative model

• Logistic regression is a discriminative model

argmaxc2CP (d | c)P(c)

argmaxc2CP(c | d)



Generative classifiers

• Build a model of what is in a cat image

• Knows about whiskers, ears, eyes

• Assigns a probability to any image -

how cat-y is this image?

• Also build a model for dog images

• Now given a new image:

• Run both models and see which one fits better



Discriminative classifiers



Overall process: Discriminative classifiers

• Components:

1. Convert di into a feature representation xi

2. Classification function to compute y ̂ using P(y ̂ |x)

3. Loss function for learning

4. Optimization algorithm

• Train phase: Learn the parameters of the model to minimize loss function on the training set

Test phase: Apply parameters to predict class given a new input (feature representation of

testing document d)

•

Input: a set of labeled documents {(di, yi)}
n

Using either sigmoid or softmax!

i=1

y = 0 or 1 (binary)i

yi = 1,…,m (multinomial)



1. Feature representation

I love this movie! It's sweet, 

but with satirical humor. The 

dialogue is great and the 

adventure scenes are fun... 

It manages to be whimsical 

and romantic while laughing 

at the conventions of the 

fairy tale genre. I would 

recommend it to just about 

anyone. I've seen it several 

times, and I'm always happy 

to see it again whenever I 

have a friend who hasn't 

seen it yet!
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Bag of words

x = [x1, x2, . . . , xk]

In BoW representations, k = |V | and the

vector could be very sparse



Example: Sentiment classification

Remember that the

values make up the

feature vector!



2. Classification function

• Given: Input feature vector x = [x1, x2, . . . , xk]

• Output: P(y = 1 |x) and P(y = 0 |x) (binary classification)

y

z

Weight vectorw = [w1, w2, . . . ,wk]

• Given input features : z = w ⋅x + b

• Therefore,

bias

1
y ̂ = P(y = 1 ∣ x) = σ(w ⋅x + b) =

1 + e−(w⋅x+b)

• Decision boundary: =
{ 0

1 if y ̂ > 0.5

otherwise



Example: Sentiment classification

• Assume weights w = [2.5, −5.0, −1.2,0.5,2.0,0.7] and bias b = 0.1



3. Loss function

• For n data points (xi, yi), yî = P(yi = 1 ∣ xi)

• Classifier probability: Πn P(y ∣ x ) = Πn

•
Loss: −log∏ P(yi|xi) = −∑ log P(yi|xi)

i=1 i=1

n

LCE = −∑ [yi log yî + (1 −yi)log(1 −yî)]

i=1

i=1 i=1i i ̂y (1 −yi

i
y ̂ )i

1−yi

n n



Example: Computing CE loss

• Assume weights w = [2.5, −5.0, −1.2,0.5,2.0,0.7] and bias b = 0.1

• If y = 1 (positive sentiment), LCE = − log(0.69) = 0.37

If y = 0 (negative sentiment), LCE = − log(0.31) = 1.17•

n

LCE = −∑ [yi log yî + (1 −yi)log(1 −yî)]

i=1

P(y = 1 ∣ x) = 0.69

P(y = 0 ∣ x) = 0.31



Properties of CE loss

•

• What values can this loss take?

A) 0 to B) to C) to 0 D) 1 to

LCE = −∑ [yi log yî + (1 −yi)log(1 −yî)]

i=1

n



Properties of CE loss

•

• What values can this loss take?

A) 0 to B) to C) to 0 D) 1 to

LCE = −∑ [yi log yî + (1 −yi)log(1 −yî)]

i=1

n

• The answer is A) - Ranges from 0 (perfect predictions) to

• Lower the value, better the classifier



4. Optimization

• We have our classification function and loss function - how do we find the best and b?

• Optimization algorithm: gradient descent!

• Cross entropy loss for logistic regression is convex (i.e. has only one global minimum) so

gradient descent is guaranteed to find the minimum.

θ = [w; b]

nθ ̂ = arg min
1

θ n ∑
i=1

L (y , x ; θ)CE i i

You should know what is learning rate, and what is stochastic gradient descent..



Gradient for logistic regression

• Gradient,

•

dLCE(w, b)

dwj

n

= ∑ [yî −yi]xi, j

i=1

dLCE(w, b)

db

n

= ∑ [yî −yi]

i=1

yî = σ(w ⋅xi + b)

n

LCE = −∑ [yi log yî + (1 −yi)log(1 −yî)]

i=1

The j-th value of the feature vector xi



Regularization

•
Training objective: θ ̂ = arg max∑ log P(yi|xi)

• This might fit the training set too well! (including noisy features), and

lead to poor generalization to the unseen test set — Overfitting

• Regularization helps prevent overfitting

n

θ

n

i=1

θ ̂ = arg max [∑ log P(yi|xi) −αR(θ)]
θ

i=1• L2 regularization:

̂θ = arg max
θ
[

n

∑
i=1

log P(yi i|x ) − α
d

∑
j=1

θ2j ]



Multinomial Logistic Regression

• What if we have more than 2 classes?

• Need to model P(y = c|x) ∀c ∈ {1,…,m}

• Generalize sigmoid function to softmax

softmax(zi) =
ezi

∑m
j=1

ezj

1 ≤ i ≤m

P(y = c|x) = ewc ⋅ x+bc

∑
j=1

em wj ⋅ x+bj

• The classifier probability is defined as:



Features in multinomial LR

• Features need to include both input (x) and class (c)

P(y = c|x) = ewc ⋅ x+bc

∑
j=1

em wj ⋅ x+bj



Learning
• Generalize binary loss to multinomial CE loss:

m

LCE(y,̂ y) = −∑ 1{y = c}log P(y = c|x)

c=1

m

= −∑ 1{y = c}log
∑

c=1

ewc⋅x+bc

m

j=1 ewj⋅x+bj

• Gradient:

dLCE

dwc

= − (1{y = c}−P(y = c |x))x

= − 1{y = c}− ewc⋅x+bc

∑
j=1

em w ⋅x+bj j
x


