
AIE1007: Natural Language Processing

L2:n-gram Language Models

Autumn 2024

Lecture plan

• Evaluating a language model (perplexity)

• Smoothing: additive, interpolation, discounting

•

• Generating from a language model

What is an n-gram language model?

Recommended reading:

JM3 3.1-3.5

What is an n-gram language model?

What is a language model?
• A probabilistic model of a sequence of words

• Joint probability distribution of words w1,w2,…,wn:

P(w1, w2, w3, ..., wn)

How likely is a given

phrase, sentence,

paragraph or even a

document?

Chain rule

p(w1)p(w2 | w1)p(w3 | w1, w2)⇥···⇥p(wn | w1, w2, . . . , wn- 1)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the)⇤P(cat|the)⇤P(sat|the cat)

⇤P(on|the cat sat)⇤P(the|the cat sat on)

⇤P(mat|the cat sat on the)

Implicit order

Conditional probability:

p(w ∣ w1,w2),∀w ∈ V
p(w1, w2, w3, . . . , wn) =

Language models are everywhere

Estimating probabilities

Assume we have a vocabulary of size V,

how many sequences of length

A) n*V

B) nV

C) Vn

D)V/n

do we have?

P(sat|the cat) =
count(the cat sat)

count(the cat)

count(the cat sat on)
P(on|the cat sat) =

count(the cat sat)

bigram

Maximum

likelihood

estimate

(MLE)

trigram

Estimating probabilities

• With a vocabulary of size V, # sequences of length n = Vn

• Typical English vocabulary ~ 40k words

• Even sentences of length <= 11 results in more than 4 * 10^50 sequences.

Too many to count! (# of atoms in the earth ~ 10^50)

P(sat|the cat) =
count(the cat sat)

count(the cat)

count(the cat sat on)
P(on|the cat sat) =

count(the cat sat)

Maximum

likelihood

estimate

(MLE)

Markov assumption

• Use only the recent past to predict the next word

• Reduces the number of estimated parameters in exchange for modeling

capacity

• 1st order

P(mat|the cat sat on the) ⇡ P(mat|the)

• 2nd order

P(mat|the cat sat on the) ⇡ P(mat|on the)

Andrey Markov

kth order Markov

Consider only the last k words (or less) for context

which implies the probability of a sequence is:

Need to estimate counts for up to (k+1) grams

(assume wj = ϕ ∀j < 0)

n-gram models

n

P(w1, w2, ...wn) =
Y

P(wi)
i=1

and Trigram, 4-gram, and so on.

Larger the n, more accurate and better the language model

(but also higher costs)

Caveat: Assuming infinite data!

Unigram

n

P(w1, w2, ...wn) =
Y

P(wi |wi - 1)
i=1

Bigram

e.g. P(the) P(cat) P(sat)

e.g. P(the) P(cat | the) P(sat | cat)

Generating from a language model

Generating from a language model

• Given a language model, how to generate a sequence?
n

P(w1, w2, ...wn) =
Y

P(wi |wi - 1)

i=1

Bigram

•

•

Generate the first word w1 ∼ P(w)

Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w2)

• …

Generating from a language model

• Given a language model, how to generate a sequence?
n

Trigram

•

•

Generate the first word w1 ∼ P(w)

Generate the second word w2 ∼ P(w ∣ w1)

Generate the third word w3 ∼ P(w ∣ w1,w2)

Generate the fourth word w4 ∼ P(w ∣ w2,w3)

• …

•

•

P(w1, w2, . . . , wn) =
Y

P(wi | wi 2, wi 1)

i=1

Generations

release millions See ABC accurate President of Donald Will

cheat them a CNN megynkelly experience @these word

out- the

Unigram

Thank you believe that @ABC news, Mississippi tonight

and the false editorial I think the great people Bill Clinton

. ' '

Bigram

We are going to MAKE AMERICA GREAT AGAIN!

#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV
Trigram

Typical LMs are not sufficient to handle long-range dependencies

“Alice/Bob could not go to work that day because

she/he had a doctor’s appointment”

Generations

With the start of the new academic year, Princeton has an opportunity to help provide a new

generation of women with a diverse set of academic resources for higher education.

We are offering the resources of the Princeton-McGill program specifically to women with

undergraduate degrees who would like to enhance their academic experience. Princeton-McGill

offers a comprehensive suite of services for women and their families including a variety of graduate

programs, support programs, and the opportunity to serve as leaders in their communities with a

wide variety of programs, activities and services. For the upcoming fall, Princeton-McGill will also

offer its Women's Center , which is located in a renovated women's dorm.

At Princeton, we are working with the Princeton-McGill community to develop a suite of programs that

are designed to give new and returning students a strong foundation for a successful, rewarding

graduate career. The Women's Center , the Princeton-McGill Women's Center provides a range of

supports to address the specific needs of female doctoral degree graduates. Programs are tailored to

meet the unique needs of women under the age of 28, women and families

https://talktotransformer.com/
n

P(w1 , w2 , . . . , wn) =
Y

P(wi | wi 1024 , . . . , wi 2 , wi 1)

Example from a GPT-2 output (2019): prompt aka. conditional context

Modern LMs can handle much longer contexts!
i= 1

Generation methods (advanced)

• Greedy: choose the most likely word!

To predict the next word given a context of two words w1,w2:

w3 = argmaxP(w|w1,w2)
w∈V

Top-k sampling Top-p sampling

https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3

• Top-k vs top-p sampling:

Evaluating a language model

Extrinsic evaluation

•

refine

Train LM apply to task observe accuracy

• Directly optimized for downstream applications

• higher task accuracy better model

• Expensive, time consuming

• Hard to optimize downstream objective (indirect feedback)

Language

model

Machine

Translation Eval

Intrinsic evaluation of language models

Research process:

• Train parameters on a suitable training corpus

• Assumption: observed sentences ~ good sentences

• Test on different, unseen corpus

• If a language model assigns a higher probability to the

test set, it is better

• Evaluation metric - perplexity!

Perplexity (ppl)

•

•

Measure of how well a LM predicts the next word

For a test corpus with words w1,w2, . . .wn

Perplexity = P(w1, w2, . . . , wn)- 1/n

whereppl(S) = e x x = −
1

logP(w ,…,w) = −
1

n
1 n n∑

n

i=1

logP(w |w . . .w)i 1 i−1

Cross-

Entropy

•
Unigram model: x = − logP(wi)

n∑
1

n

i=1

(since P(wj |w1 . . .wj−1) ≈ P(wj))

• Minimizing perplexity ~ maximizing probability of corpus

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

A) e |V| B) |V| C) |V|2
D) e− |V|

P(w|wi− k, . . .wi−1) = |V|

what is the perplexity of the test corpus?

1

whereppl(S) = e x
1

= −
n∑

n

i=1

logP(w |w . . .w)i 1 i−1
Cross-

Entropy

∀w ∈ V

Intuition on perplexity

wher

e

ppl(S) = e x

x = −
1

n∑

n

i=1

logP(w |w . . .w
)

i 1 i−1

ppl = e− nn log(1/|V|) = |V|

Measure of model’s uncertainty about next word (aka `average branching factor’)

branching factor = # of possible words following any word

1

P(w|wi− k, . . .wi−1) = |V|

what is the perplexity of the test corpus?

1
∀w ∈ V

If our k-gram model (with vocabulary V) has following probability:

A) e |V| B) |V| C) |V|2
D) e− |V|

Perplexity

GPT-3 175B:

ppl = 20.5

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Smoothing

Generalization of n-grams
Any problems with n-gram models and their evaluation?

• Not all n-grams in the test set will be observed in training data

• Test corpus might have some that have zero probability under our model

• Training set: Google news

• Test set: Shakespeare

• P(affray | voice doth us) = 0 ⟹ P(test corpus) = 0

• Perplexity is not defined.
wher

e

ppl(S) = e x

x = −
1

n∑

n

i=1

logP(w |w . . .w
)

i 1 i−1

Sparsity in language

F
re

q
u
e
n
c
y

Rank

• Long tail of infrequent words

• Most finite-size corpora will have this problem.

Zipf’s Law

f req /
rank

1

Smoothing

• Handle sparsity by making sure all probabilities are non-zero in our model

• Additive: Add a small amount to all probabilities

• Interpolation: Use a combination of different granularities of n-grams

• Discounting: Redistribute probability mass from observed n-grams to

unobserved ones

Smoothing intuition

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

Steal probability mass to generalize better
P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

(Slide credit: Dan Klein)

a
tt
a
c
k

m
a
n

o
u
tc

o
m

e

s
n

o
i

ga

t
e
l

al

a
tt
a
c

m
a
n

o
u
tc

o
m

e

a
ll
e
g
a
t
io

n
s

r
e
p
o
r
t
s

c
la

im
s

r
e
q
u
e
s
t

…

a
ll
e
g
a
t
io

n
s

k

r
e
p
o
r
t
s

s

…

c
l
a
i
m

r
e
q
u
e
s
t

Laplace smoothing

• Also known as add-alpha

• Simplest form of smoothing: Just add to all counts and renormalize!

• Max likelihood estimate for bigrams:

• After smoothing:

P (wi |wi - 1) =
C (wi - 1, wi)

C (wi - 1)

P (wi |wi 1) =
C (wi 1, wi) +↵

C (w)+↵|V |i 1

Raw bigram counts

(Berkeley restaurant corpus)

• Out of 9222 sentences

(Slide credit: Dan Jurafsky)

Smoothed bigram counts

Add 1 to all the entries in the matrix

(Slide credit: Dan Jurafsky)

Smoothed bigram probabilities

(Credits: Dan Jurafsky)

P (wi |wi 1) =
C (wi 1, wi) +↵

C (w)+↵|V |i 1
α = 1

Linear Interpolation

• Use a combination of models to estimate probability

• Strong empirical performance

P̂(wi | wi - 2, wi - 1) = λ1P(wi | wi - 2, wi - 1)

+λ2P(wi |wi- 1)

+λ3P(wi)
X

λ i = 1
i

Trigram

Bigram

Unigram

How can we choose lambdas?

• First, estimate n-gram prob. on training set

• Then, estimate lambdas (hyperparameters) to maximize

probability on the held-out development/validation set

• Use best model from above to evaluate on test set

Text corpus

Train
Development/

Validation

Test

Discounting

• Determine some “mass” to remove from probability estimates

• More explicit method for redistributing mass among unseen n-grams

• Just choose an absolute value to discount (usually <1)

Absolute Discounting

• Define Count*(x) = Count(x) - 0.5

• Missing probability mass:

• Divide this mass between words

for which Count(the,) = 0

↵(wi一1) = 1一
X

w

Count⇤(wi一1,w)

Count(wi一1)

↵(the) = 10⇥0.5/48 = 5/48

if c(wi−1,wi) > 0Pabs_discount(wi|wi−1) =
c(wi−1,wi) − d

c(w)i−1

Unigram probabilities

Absolute Discounting

if c(wi−1,wi) = 0α(wi−1) ∑

P(wi)

w′
P(w′)

↵(the) = 10⇥0.5/48 = 5/48

