

AIE1007: Natural Language Processing

LI5: Contextualized Representations and Pre-training

Autumn 2024

Announcements

- Project proposal feedback on Gradescope by April 12
- Project poster session scheduled on May 3rd 1:30-3:30pm @Friend Center upper atrium
- Project Compute: We can reimburse each team one month of Colab Pro for your computing needs or up to \$50 of OpenAI/Claude credits (see Ed post!)
- A4 is slightly more challenging get started early!
- April 12 and April 19: Guest lectures!

This lecture

- Contextualized word embeddings
- Pre-training and fine-tuning
- GPT, ELMo, BERT

- GPT = Generative Pre-Training
- BERT = **B**idirectional Encoder **R**epresentations from **T**ransformers

ELMo = Embeddings from Language Models

(ERNIE, Grover, Big Bird, Kermit, RoBERTa, Rosita, ...)

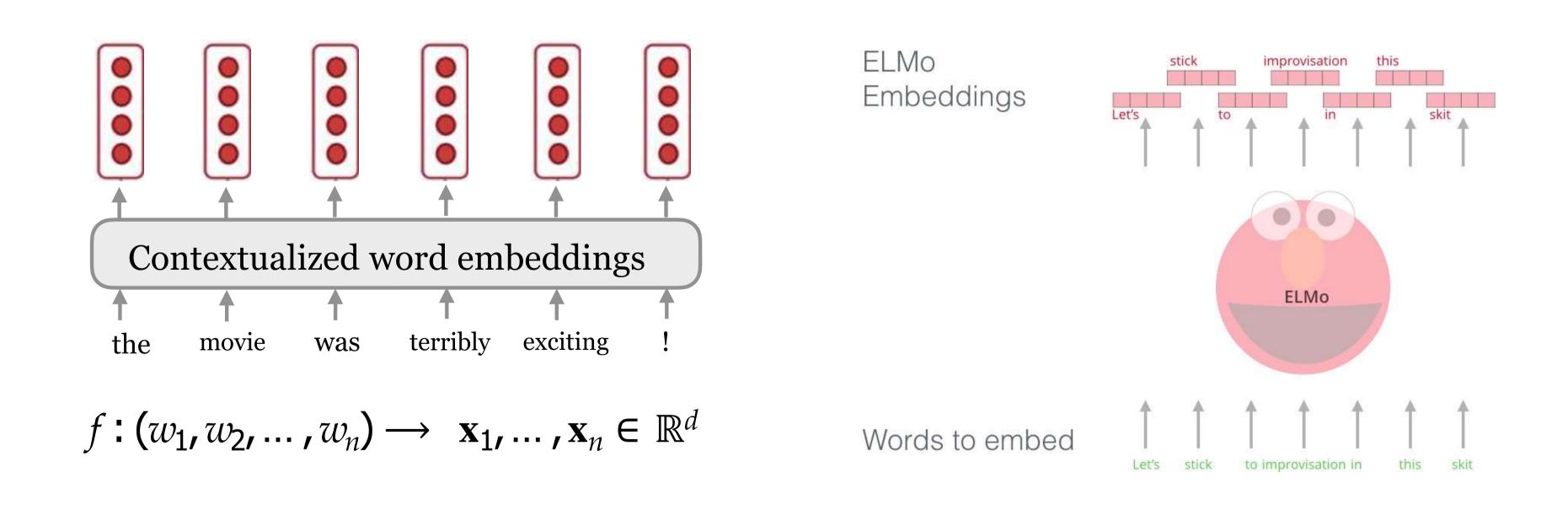
Limitations of word2vec

- One vector for each word type (Aka. "Static word embeddings")
- Complex characteristics of word use: syntax and semantics
- Polysemous words, e.g., bank, mouse

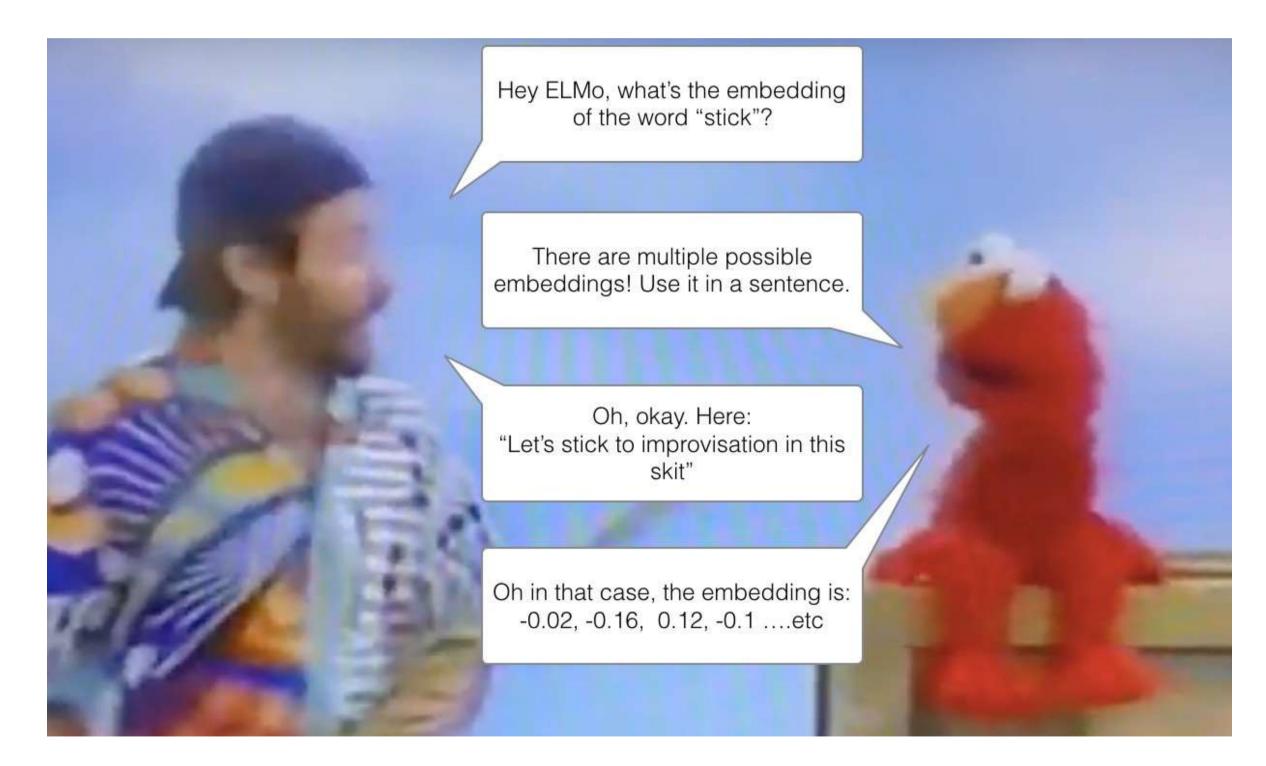
mouse¹ : a *mouse* controlling a computer system in 1968. **mouse²** : a quiet animal like a *mouse* **bank¹**: ...a *bank* can hold the investments in a custodial account ... **bank²** : ...as agriculture burgeons on the east *bank*, the river ...

$$v(\text{play}) = \begin{bmatrix} B & -0.224 \\ B & C \\ @ - 0.290 \\ 0.276 \end{bmatrix}$$

Let's build a vector for each word conditioned on its **context**!



Let's build a vector for each word conditioned on its **context**!



Sent #1: Chico Ruiz made a spectacular play on Alusik's grounder {...}

Sent #2: Olivia De Havilland signed to do a Broadway play for Garson {...}

Sent #3: Kieffer was commended for his ability to hit in the clutch, as well as his all-round excellent **play** $\{...\}$

Sent #4: {...} they were actors who had been handed fat roles in a successful **play** {...}

Sent #5: Concepts play an important role in all aspects of cognition {...}

- v(play) = ?

Sent #1: Chico Ruiz made a spectacular play on Alusik's grounder {...}

Which of the following v(play) is expected to have the most similar vector to the first one?

- Olivia De Havilland signed to do a Broadway play for Garson {...} (A)
- Kieffer was commended for his ability to hit in the clutch, as well as **(B)** his all-round excellent play {...}
- {...} they were actors who had been handed fat roles in a successful play {...} (C)
- Concepts play an important role in all aspects of cognition {...} (D)

(B) is correct.

8	Source	Nearest Neighbors		
GloVe	play	playing, game, gan Play, football, multi		
biLM	Chico Ruiz made a spec- tacular <u>play</u> on Alusik 's grounder {}	Kieffer, the only ju for his ability to hit i excellent play.		
	Olivia De Havilland signed to do a Broadway play for Garson $\{\}$	{} they were actors a successful play, a competently, with n		

(Peters et al, 2018): Deep contextualized word representations

mes, played, players, plays, player, iplayer

unior in the group, was commended in the clutch, as well as his all-round

tors who had been handed fat roles in and had talent enough to fill the roles nice understatement.

ELMo: Embeddings from Language Models

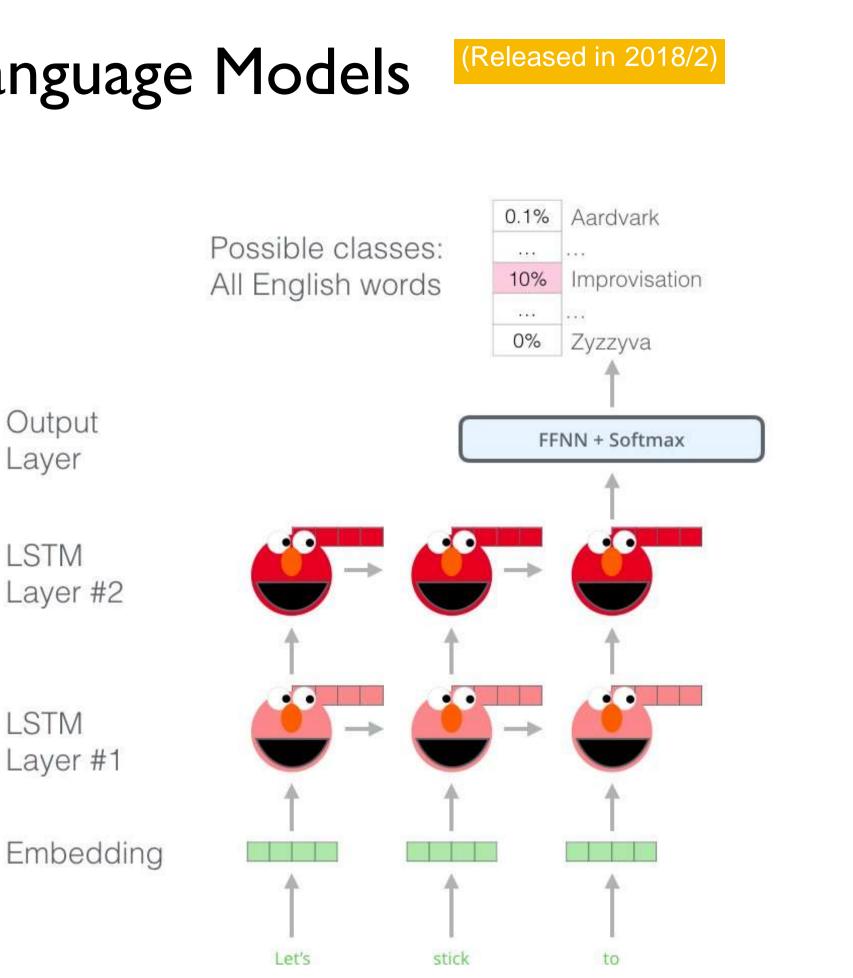
The key idea of ELMo:

- Train two stacked LSTM-based language models on a large corpus
- Use the **hidden states** of the LSTMs for each token to compute a vector representation of each word

Output Layer

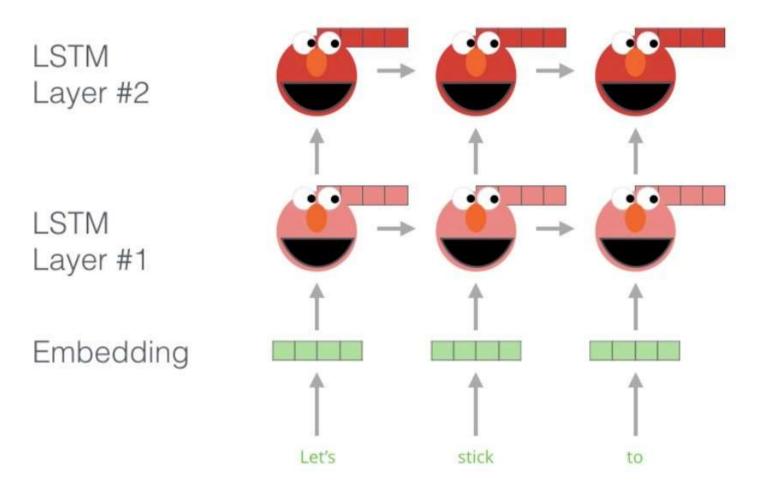
LSTM Layer #2

LSTM Layer #1



How does ELMo work?

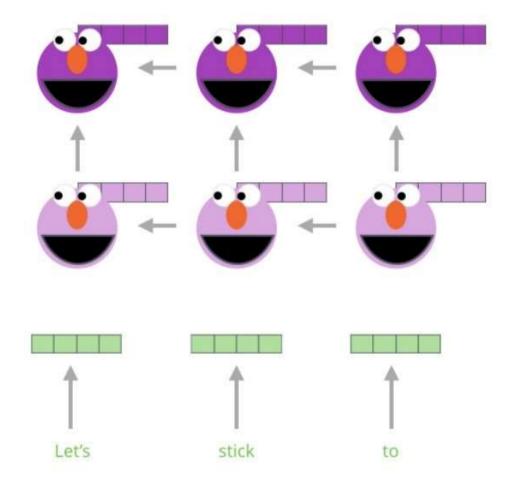
Forward Language Model



$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}$$

The weights γ^{task} , s_i^{task} are task-dependent and learned

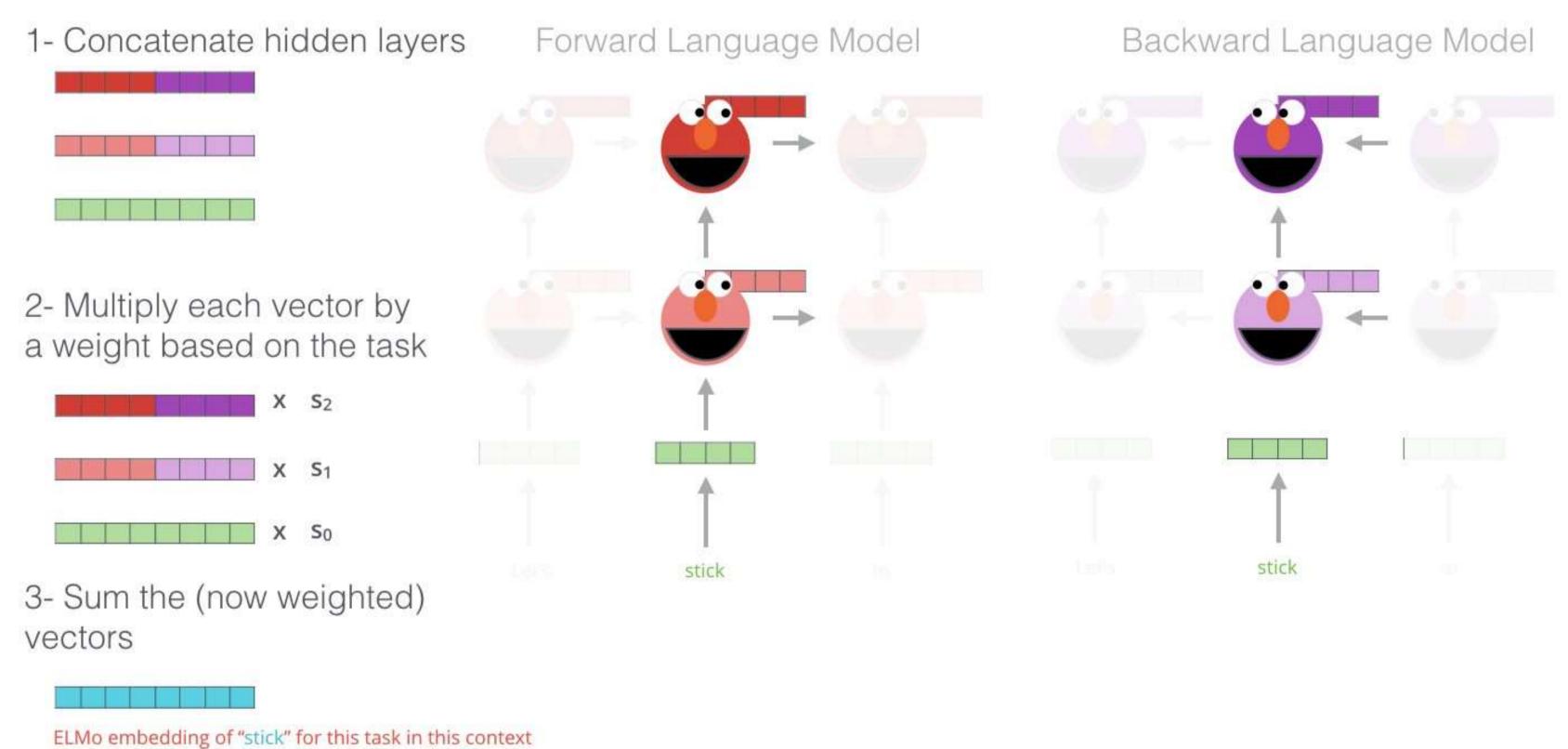
Backward Language Model



Contextualized word embeddings =

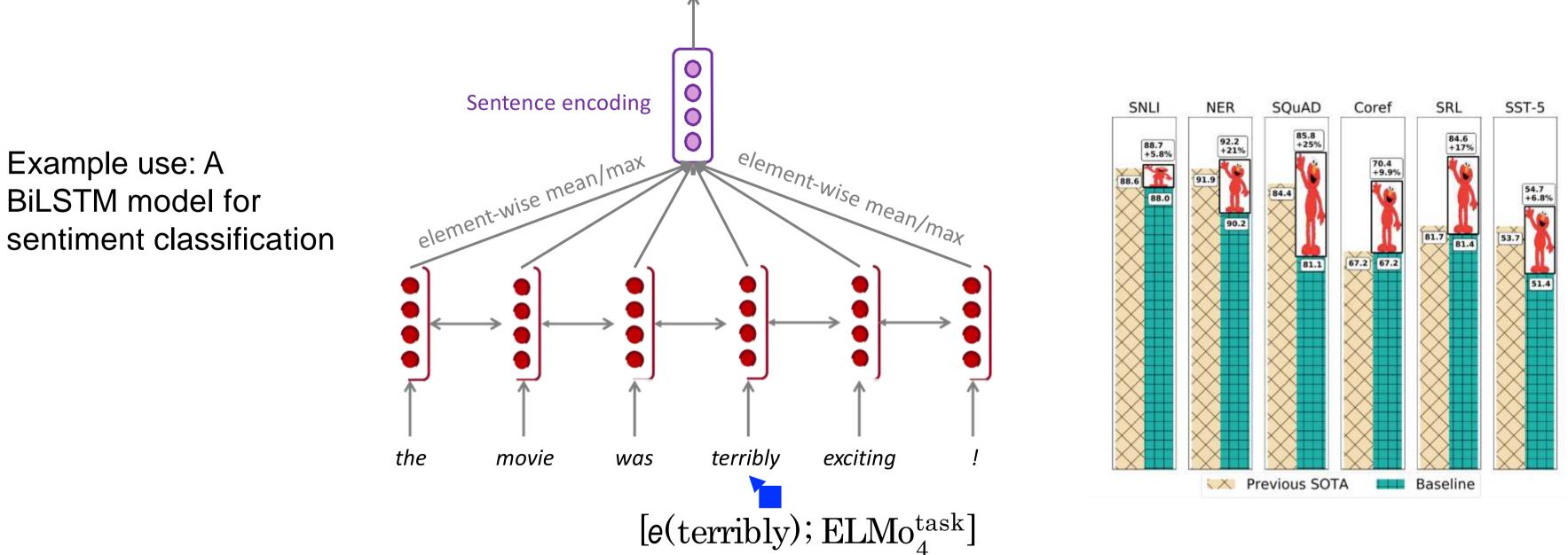
The weighted average of input embeddings + all hidden representations

How does ELMo work?



ELMo: pre-training and the use

- Data: 10 epochs on 1B Word Benchmark (trained on **single sentences**)
- Training time: 2 weeks on 3 NVIDIA GTX 1080 GPUs



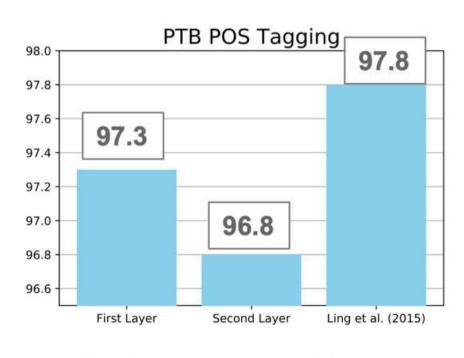
(Peters et al, 2018): Deep contextualized word representations

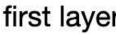
ELMo: some take-aways

Q: Why use both forward and backward language models?

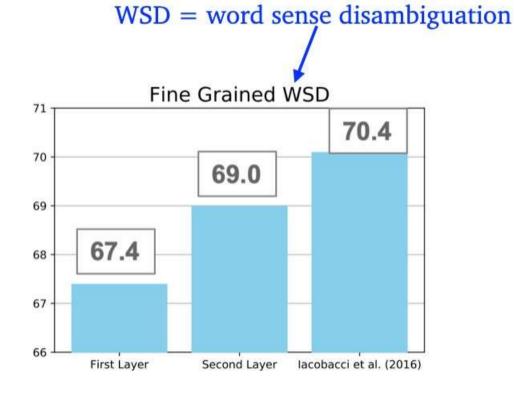
Because it is important to model both left and right context! Bidirectionality is very important in language understanding tasks!

Q: Why use the weighted average of different layers instead of just the top layer? Because different layers are expected to encode different information.





first layer > second layer



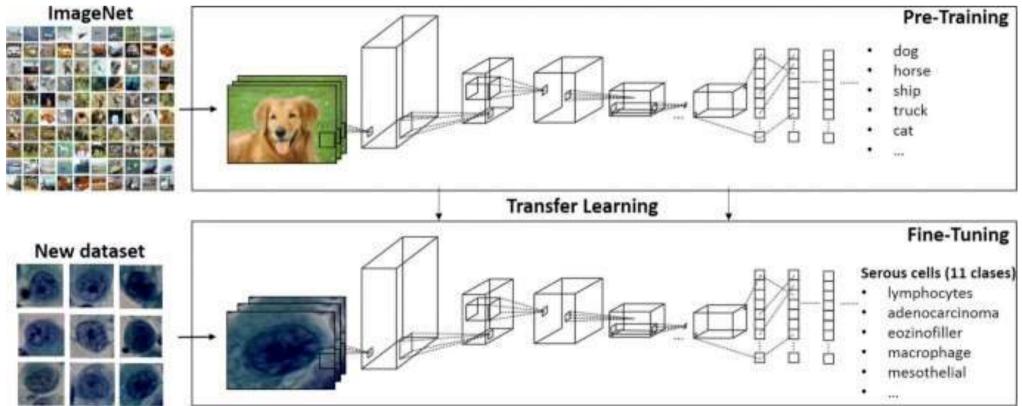
second layer > first layer

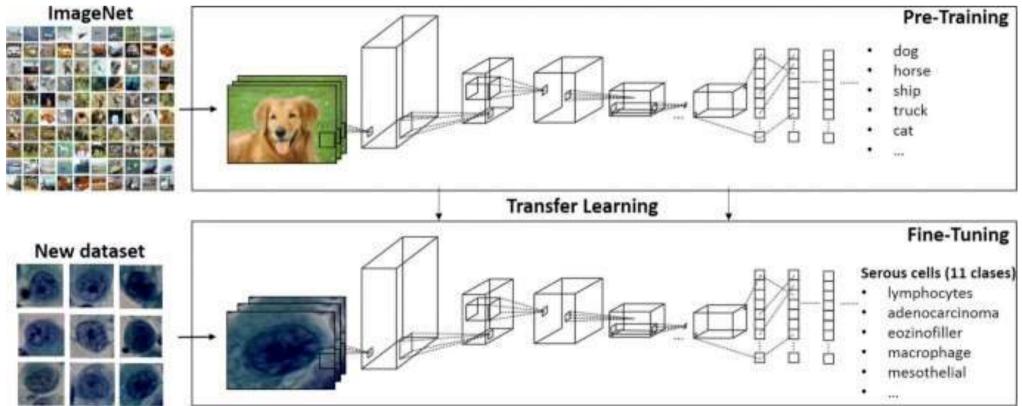
Pre-training and Fine-tuning

What is pre-training / fine-tuning?

- "Pre-train" a model on a large dataset for task X, then "fine-tune" it on a dataset for task Y
- Key idea: X is somewhat related to Y, so a model that can do X will have some good neural representations for Y as well
- ImageNet pre-training is huge in computer vision: learning generic visual features for recognizing objects

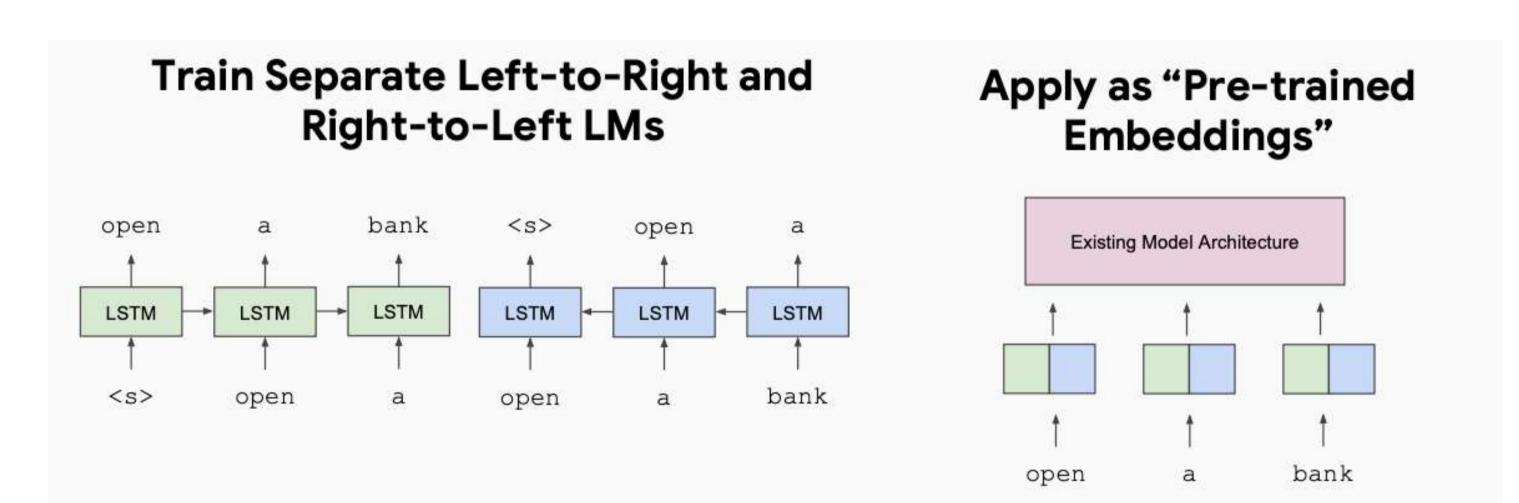
Can we find some task X that can be useful for a wide range of downstream tasks Y?





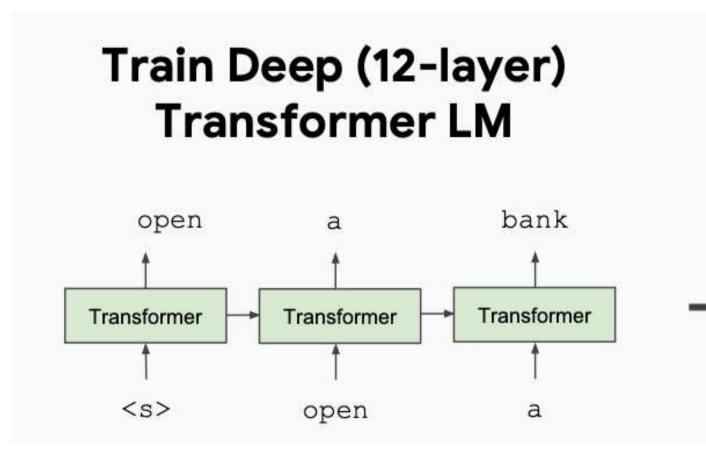
Feature-based vs fine-tuning approaches

• ELMo is a feature-based approach which only produces word embeddings that can be used as **input representations** of existing neural models

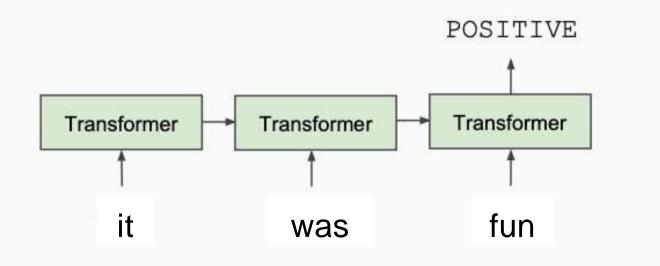


Feature-based vs fine-tuning approaches

- GPT / BERT (and most of following models) are **fine-tuning approaches**
 - Almost all model weights will be **re-used**, and only a small number of taskspecific will be added for downstream tasks

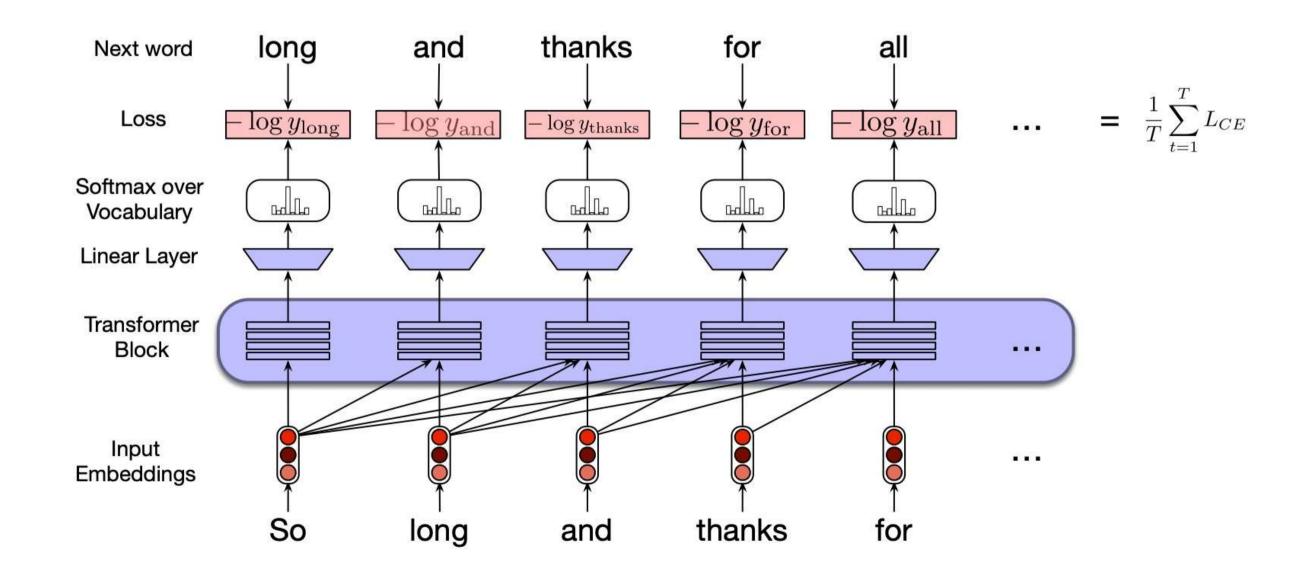


Fine-tune on **Classification Task**



(Released in 2018/6) Generative Pre-Training (GPT)

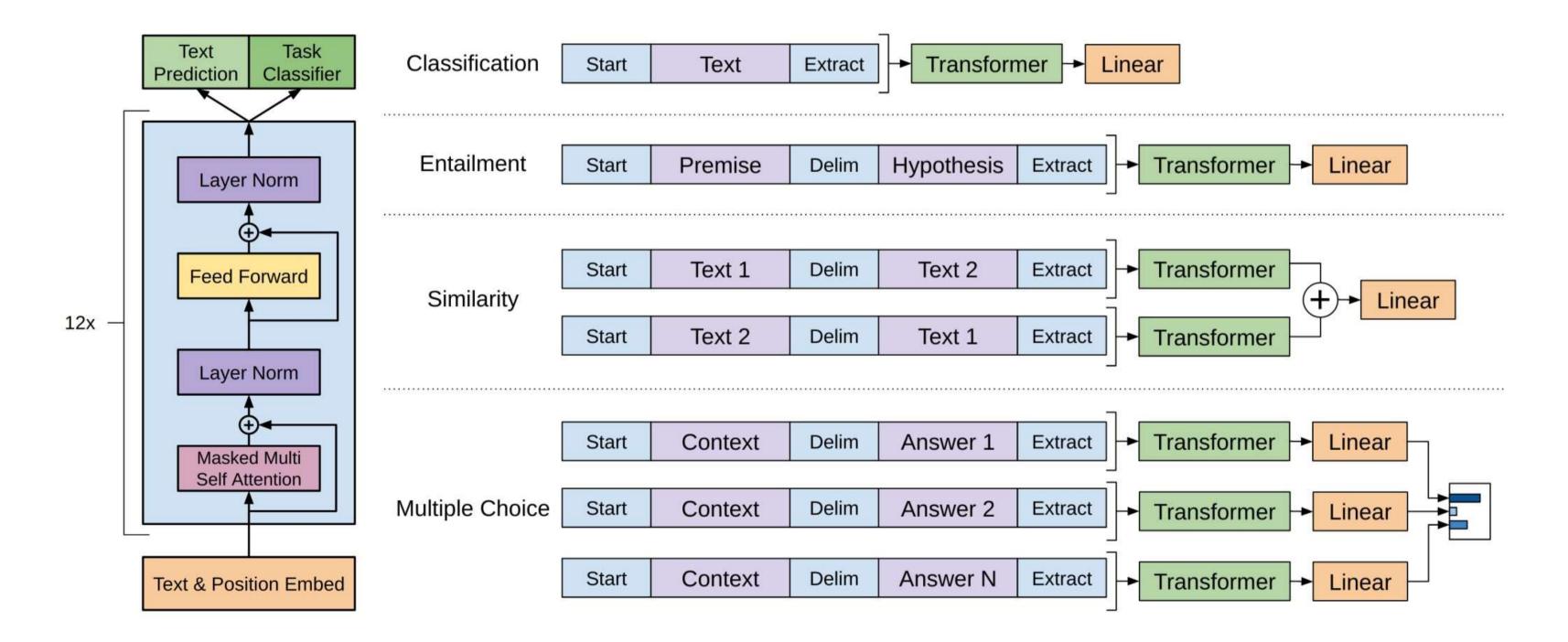
- Use a Transformer decoder (unidirectional; left-to-right) instead of LSTMs
- Use **language modeling** as a pre-training objective
- Trained on longer segments of text (512 BPE tokens), not just single sentences



(Radford et al, 2018): Improving Language Understanding by Generative Pre-Training

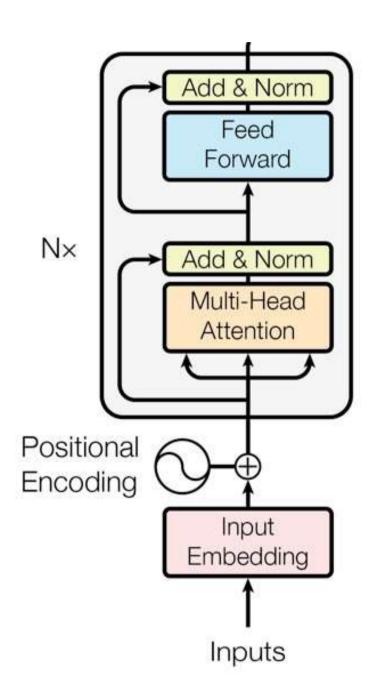
(Released in 2018/6) Generative Pre-Training (GPT)

• "Fine-tune" the entire set of model parameters on various downstream tasks



(Radford et al, 2018): Improving Language Understanding by Generative Pre-Training

BERT: Bidirectional Encoder Representations from Transformers



- It is a fine-tuning approach based on a deep **bidirectional Transformer encoder** instead of a Transformer decoder
- The key: learn representations based on **bidirectional contexts**

Example # 1: we went to the river <u>bank</u>.

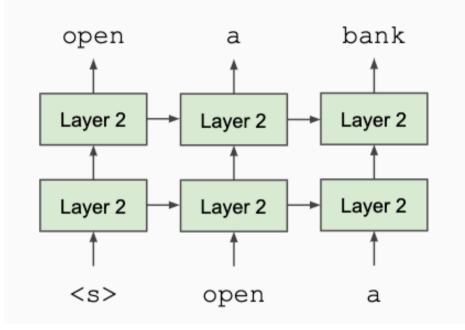
- Two new pre-training objectives:
 - Masked language modeling (MLM)
 - Next sentence prediction (NSP) Later work shows that NSP hurts performance though...

- Example #2: I need to go to <u>bank</u> to make a deposit.

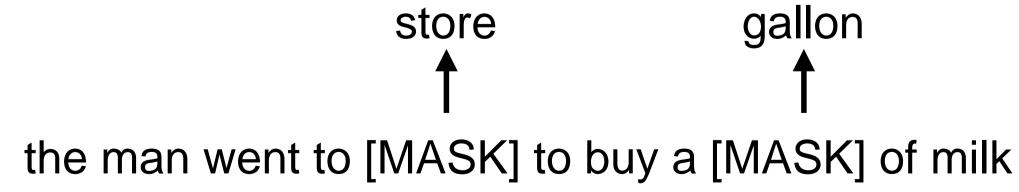
(Released in 2018/10)

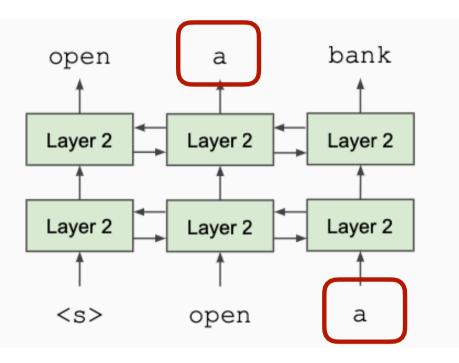
Masked Language Modeling (MLM)

Q: Why we can't do language modeling with bidirectional models? \bullet



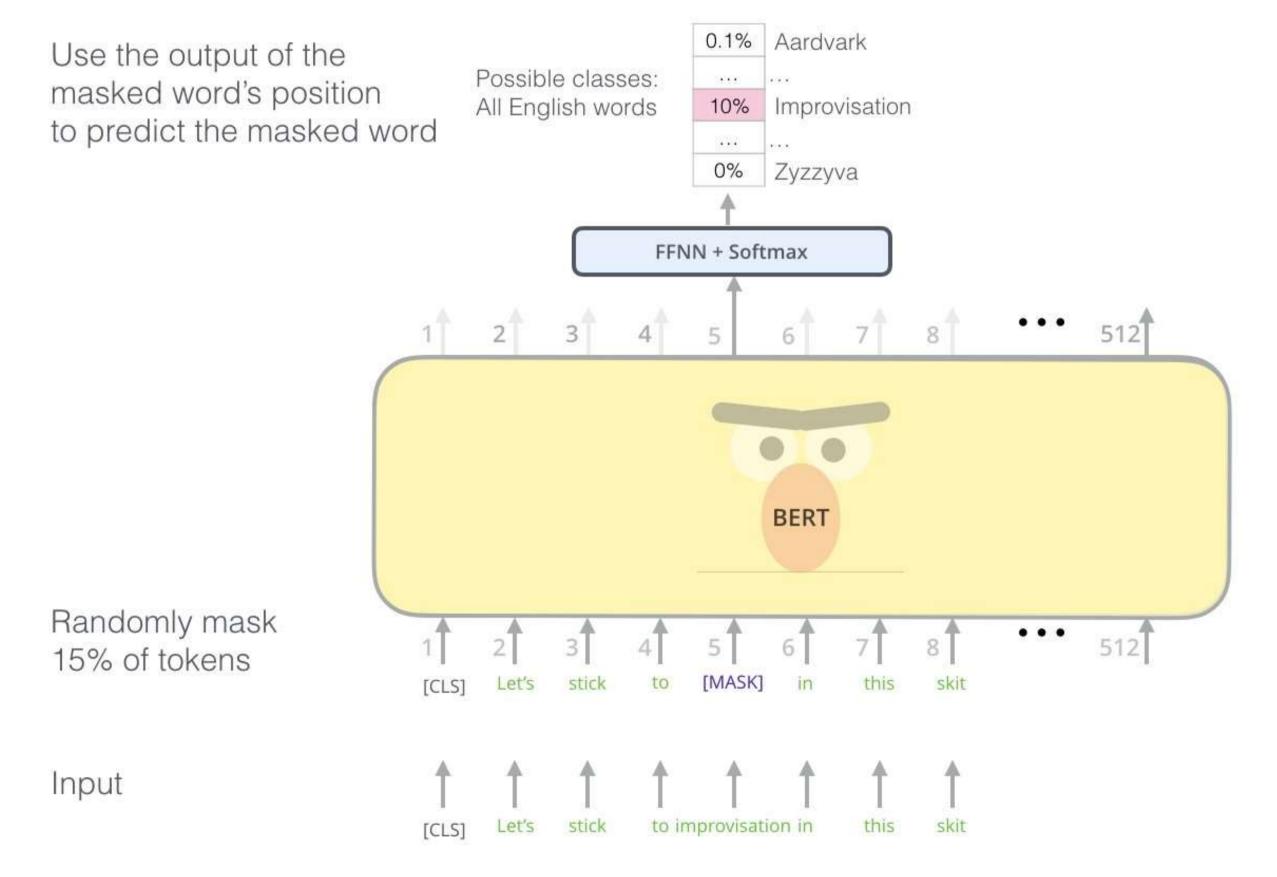
Solution: Mask out k% of the input words, and then predict the masked words





gallon k = 15% in practice

Masked Language Modeling (MLM)



MLM: 80-10-10 corruption

For the 15% predicted words,

80% of the time, they replace it with [MASK] token

went to the store

• 10% of the time, they replace it with a random word in the vocabulary

went to the store

- 10% of the time, they keep it unchanged
 - went to the store went to the store

Why? Because [MASK] tokens are never seen during fine-tuning

- went to the [MASK]

went to the running

- (See Table 8 of the paper for an ablation study)

Next Sentence Prediction (NSP)

- Motivation: many NLP downstream tasks require understanding the relationship between two sentences (natural language inference, paraphrase detection, QA)
- NSP is designed to reduce the gap between pre-training and fine-tuning

[CLS]: a special token always at the beginning **Input** = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP] Label = NotNext

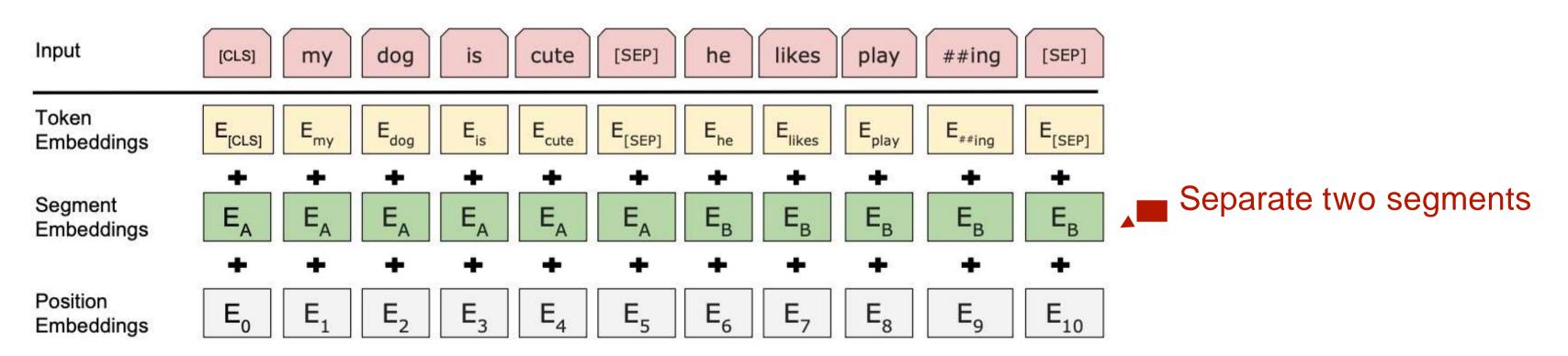
[SEP]: a special token used to separate two segments

They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

BERT pre-training

• Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)

Input embeddings: •

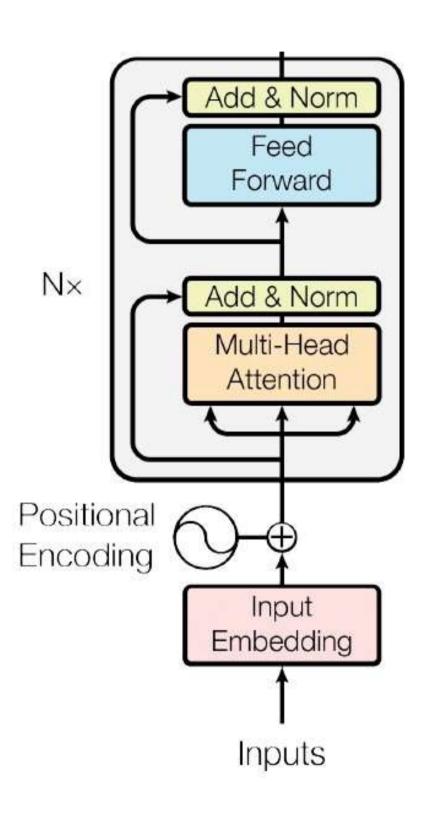


(Image: Stanford CS224N

BERT pre-training

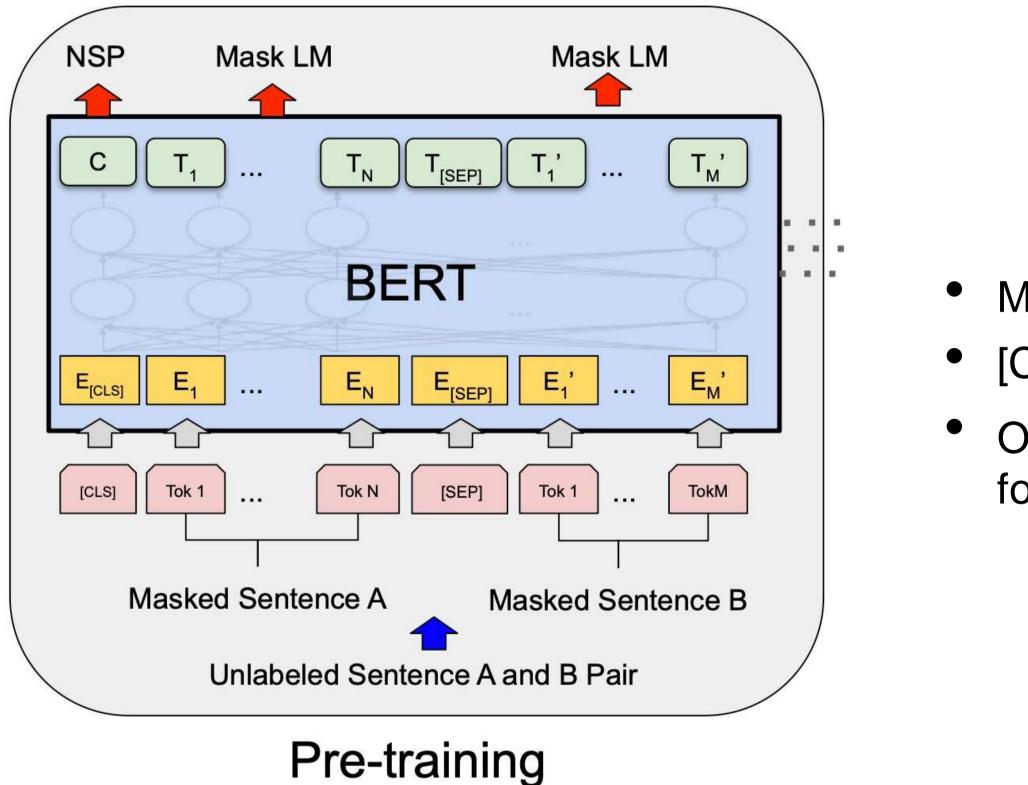
- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters
 Same as OpenAl GPT
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters

- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
- Max sequence size: 512 wordpiece tokens (roughly 256 and 256 for two non-contiguous sequences)
- Trained for 1M steps, batch size 128k



OpenAI GPT was trained on BooksCorpus only!

BERT pre-training

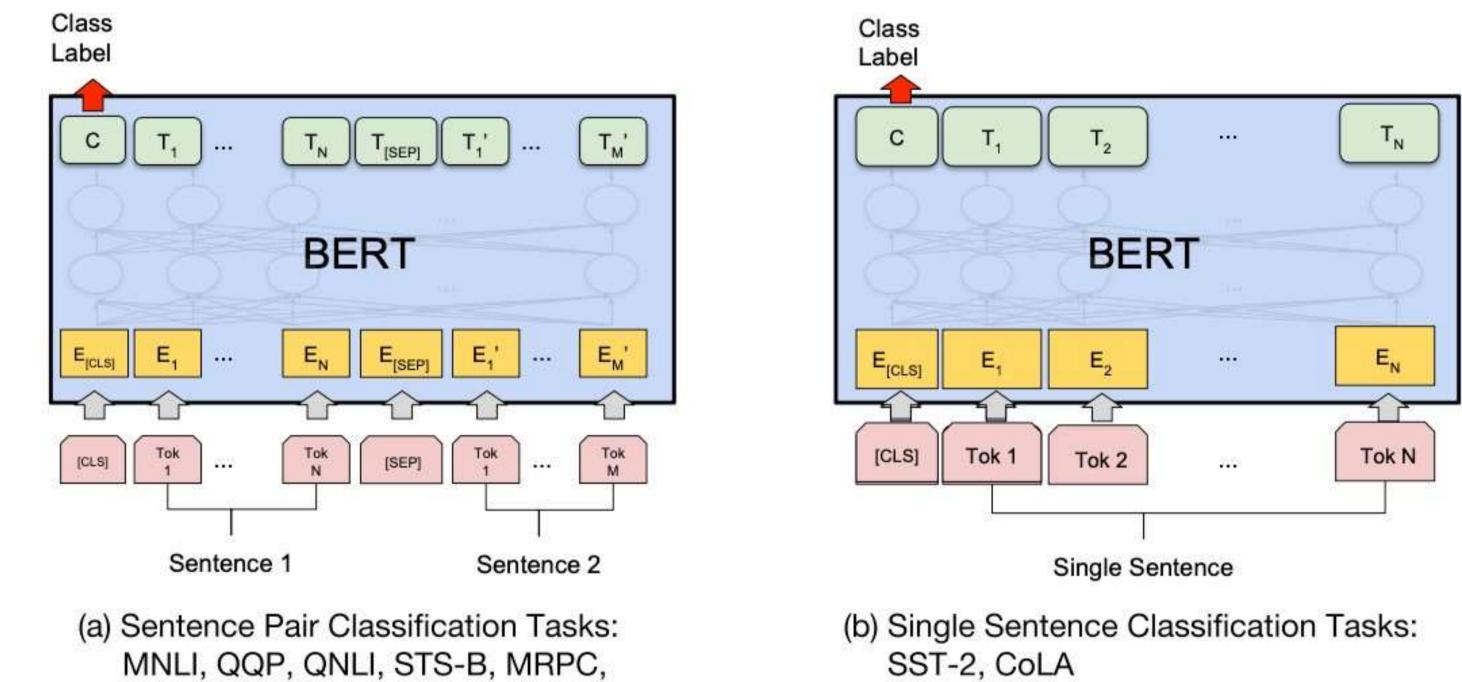


- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

BERT fine-tuning

"Pretrain once, finetune many times."

sentence-level tasks



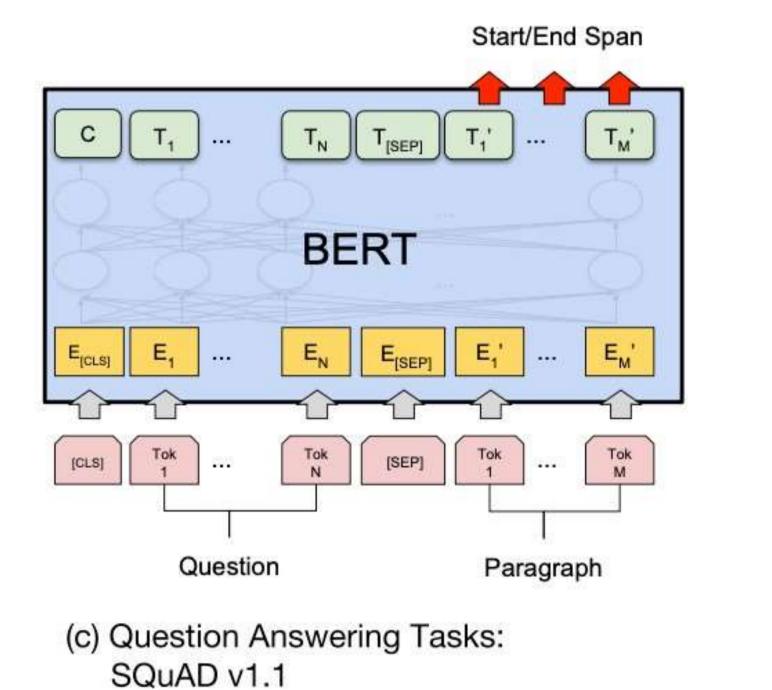
RTE, SWAG

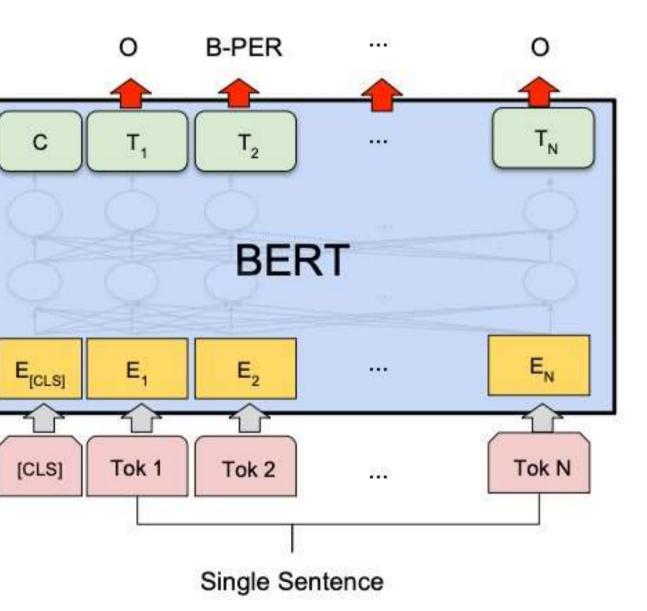
SST-2, CoLA

BERT fine-tuning

"Pretrain once, finetune many times."

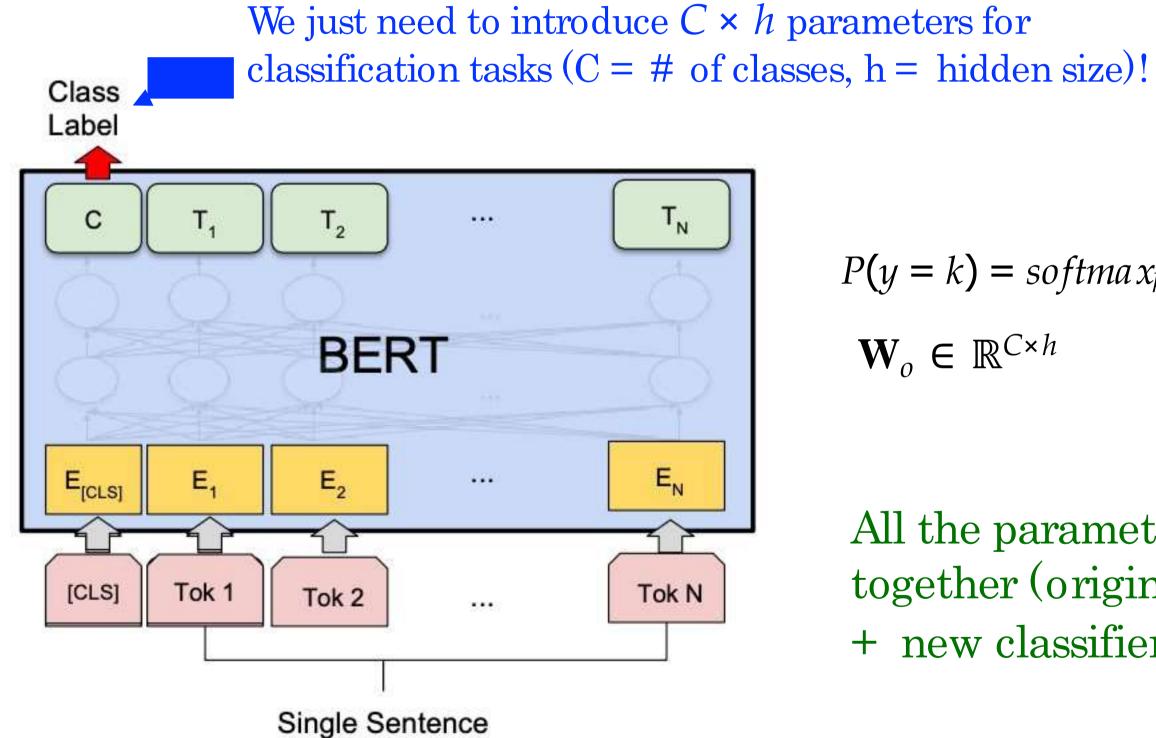
token-level tasks





(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

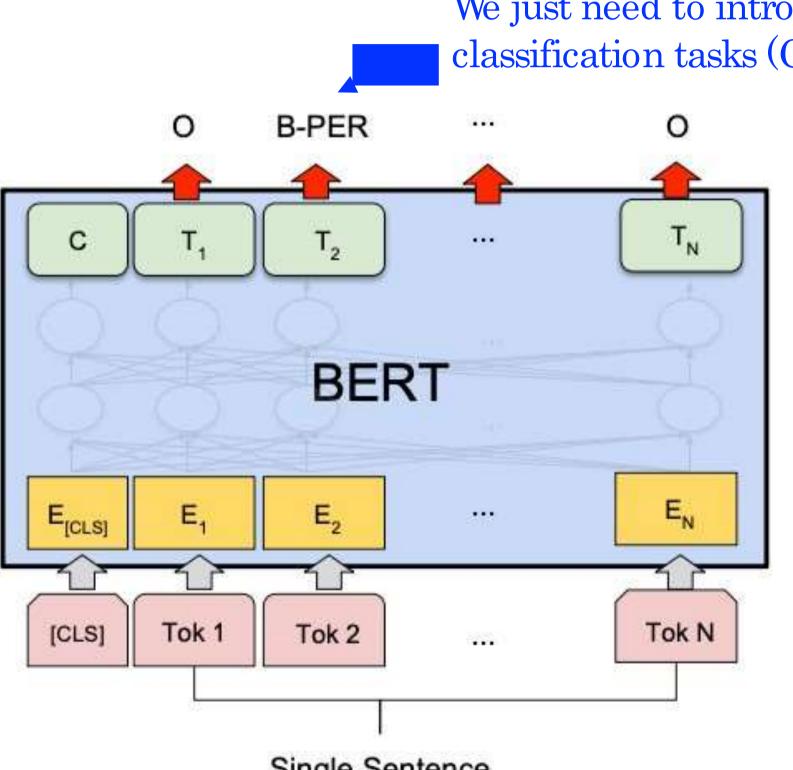
Example: sentiment classification



$$P(y = k) = softmax_k(\mathbf{W}_o\mathbf{h}_{[CLS]})$$
$$\mathbf{W}_o \in \mathbb{R}^{C \times h}$$

All the parameters will be learned together (original BERT parameters + new classifier parameters)

Example: named entity recognition (NER)



Single Sentence

We just need to introduce $C \times h$ parameters for classification tasks (C = # of classes, h = hidden size)!

$P(y_i = k) = softma x_k(\mathbf{W}_o \mathbf{h}_i)$ $\mathbf{W}_o \in \mathbb{R}^{C \times h}$

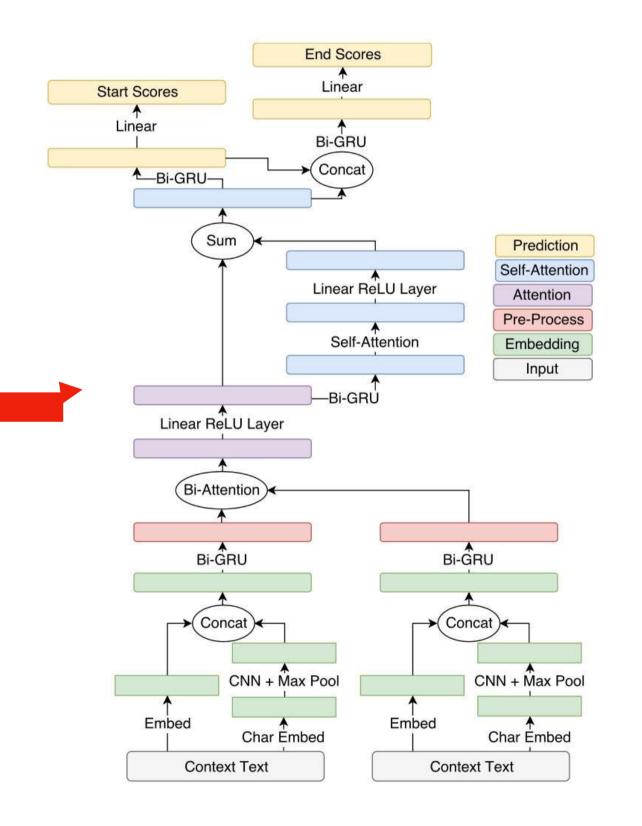
Experimental results: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	<u></u>
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Experimental results: SQuAD

System	Dev		Test					
	EM	F1	EM	F1				
Top Leaderboard Systems (Dec 10th, 2018)								
Human	-	3 11	82.3	91.2				
#1 Ensemble - nlnet		-	86.0	91.7				
#2 Ensemble - QANet	-		84.5	90.5				
Publishe	ed			Υ.				
BiDAF+ELMo (Single)	(<u></u>	85.6	-	85.8				
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5				
Ours								
BERT _{BASE} (Single)	80.8	88.5	-	-				
BERT _{LARGE} (Single)	84.1	90.9	-	-				
BERT _{LARGE} (Ensemble)	85.8	91.8		-				
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8				
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2				

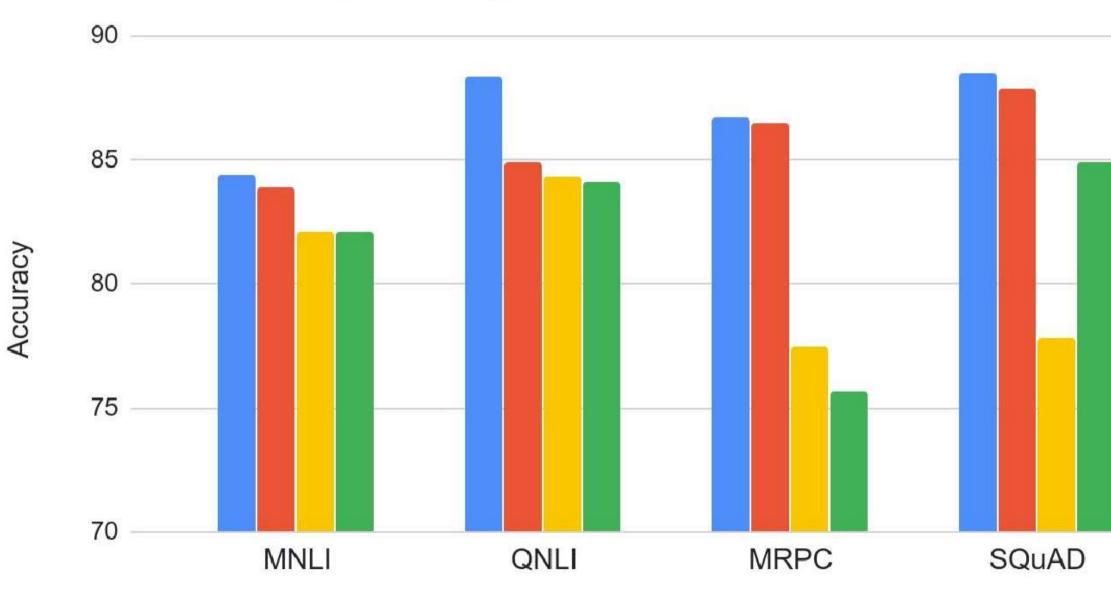
SQuAD = Stanford Question Answering dataset



Ablation study: pre-training tasks

Effect of Pre-training Task

BERT-Base No Next Sent Left-to-Right & No Next Sent Left-to-Right & No Next Sent + BiLSTM



- MLM >> left-to-right LMs
- NSP improves on some tasks
- Note: later work (Joshi et al., 2020; Liu et al., 2019) argued that NSP is not useful

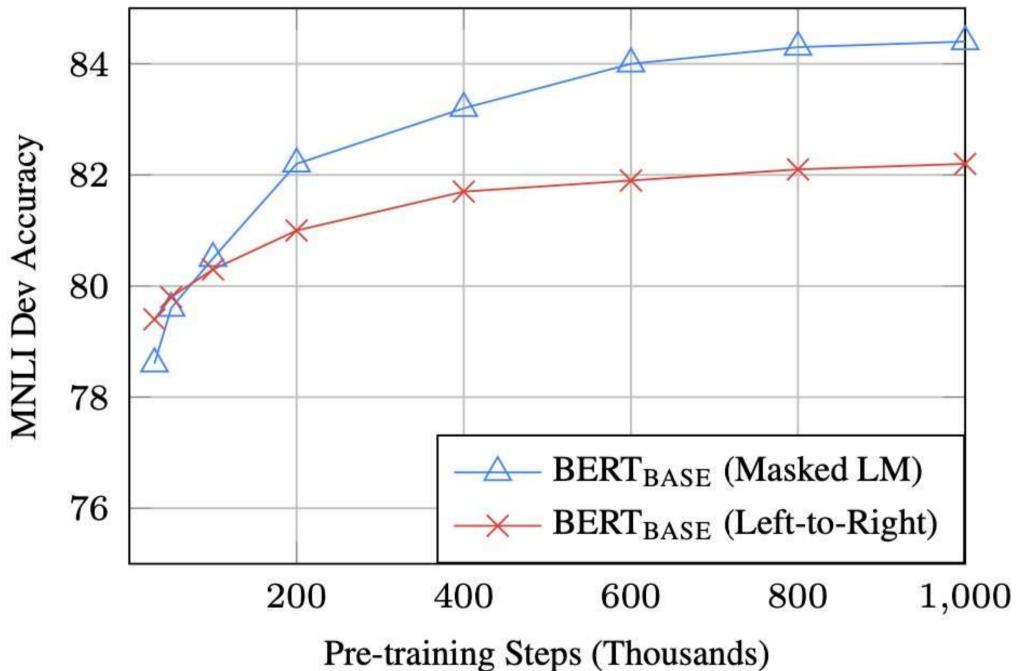
Ablation study: model sizes

layers		· ·					
Hyperparams				Dev Set Accuracy			
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST	
3	768	12	5.84	77.9	79.8	88.	
6	768	3	5.24	80.6	82.2	90.	
6	768	12	4.68	81.9	84.8	91.	
12	768	12	3.99	84.4	86.7	92.	
12	1024	16	3.54	85.7	86.9	93.	
24	1024	16	3.23	86.6	87.8	93.	
	Hy #L 3 6 12 12	ayers size Hyperpar #L #H 3 768 6 768 6 768 12 768 12 768 12 1024	ayers size he Hyperparams #L #H #A 3 768 12 6 768 3 6 768 12 12 768 12 12 768 12 12 1024 16	ayers size heads Hyperparams	ayerssizeheadsHyperparamsDev Set#L#H#ALM (ppl)3768125.8477.9676835.2480.66768124.6881.91276812121024163.5485.7	HyperparamsDev Set Accura $\#L$ $\#H$ $\#A$ LM (ppl)MNLI-mMRPC3768125.8477.979.8676835.2480.682.26768124.6881.984.812768123.9984.486.7121024163.5485.786.9	

Г-2 .4 .7 .3 .9 .3

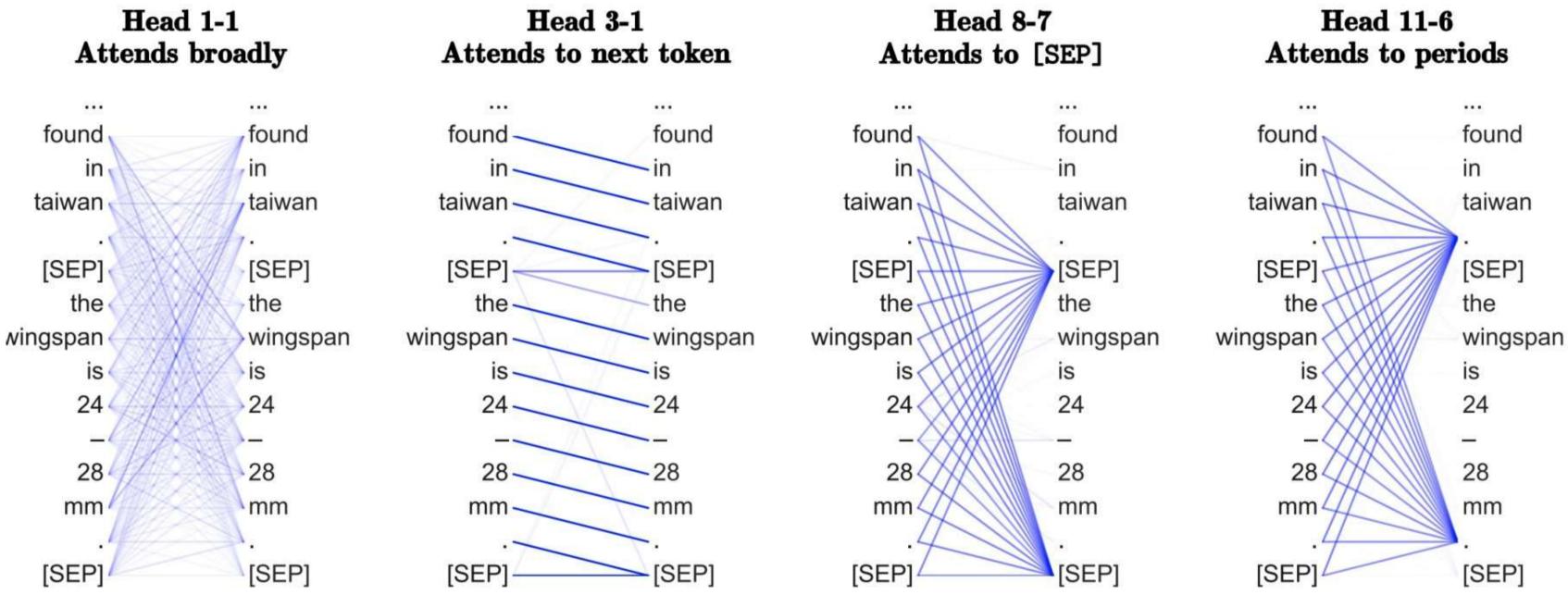
The bigger, the better!

Ablation study: training efficiency



MLM takes slightly longer to converge because it only predicts 15% of tokens

What does BERT learn?



(Clark et al., 2019) What Does BERT Look At? An Analysis of BERT's Attention

ELMo vs GPT vs BERT

Which of the following statements is INCORRECT?

- (A) BERT was trained on more data than ELMo
- (B) BERT builds on Transformer encoder, and GPT builds on Transformer decoder
- (C) ELMo requires different model architectures for different tasks
- (D) BERT was trained on data with longer contexts compared to GPT

(D) is correct.

