

# AIE1007: Natural Language Processing

# LI4: Transformers (cont'd)

Autumn 2024

# Attention as a soft, averaging lookup table

We can think of **attention** as performing fuzzy lookup a in **key-value store** 

**Lookup table:** a table of keys that map to values. The query matches one of the keys, returning its value.



**Attention**: The query matches to all keys softly to a weight between 0 and 1. The keys' values are multipled by the weights and summed.



## Self-attention

A self-attention layer maps a sequence of input vectors  $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^{d_1}$  to a sequence of *n* vectors:  $\mathbf{h}_1, ..., \mathbf{h}_n \in \mathbb{R}^{d_2}$ 

Step #1: Transform each input vector into three vectors: query, key, and value vectors

$$\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{Q} \in \mathbb{R}^{d_{q}} \qquad \mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{K} \in \mathbb{R}^{d_{k}} \qquad \mathbf{v}_{i} = \mathbf{x}_{i} \mathbf{W}^{V} \in \mathbb{R}^{d_{v}}$$
$$\mathbf{W}^{Q} \in \mathbb{R}^{d_{1} \times d_{q}} \qquad \mathbf{W}^{K} \in \mathbb{R}^{d_{1} \times d_{k}} \qquad \mathbf{W}^{V} \in \mathbb{R}^{d_{1} \times d_{v}}$$

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax For each  $\mathbf{q}_i$ , compute attention scores and attention distribution:

$$e_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{p_{dk}}, 8j = 1, \dots, n$$

## Self-attention

A self-attention layer maps a sequence of input vectors  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{d_1}$  to a sequence of *n* vectors:  $\mathbf{h}_1, ..., \mathbf{h}_n \in \mathbb{R}^{d_2}$ Input

Step #3: Compute output for each input

 $\mathbf{h}_{i} = \mathbf{X}_{i,j} \mathbf{v}_{j} \ 2 \ \mathsf{R}^{d_{v}}$ 

j = 1

as weighted sum of values

Queries

Keys

Values

Score

Softmax

Softmax Х Value

Sum



https://jalammar.github.io/illustrated-transformer/

# Transformer encoder: let's put things together



From the bottom to the top:

- Input embedding
- Positional encoding
- A stack of Transformer encoder layers

consists of two sub-layers:

- Multi-head attention layer
- Feed-forward layer

$$\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{d_1}$$

Transformer encoder is a stack of N layers, which

### → $\mathbf{h}_1, \ldots, \mathbf{h}_n \in \mathbb{R}^{d_2}$

## Residual connection & layer normalization Add & Norm: LayerNorm(x + Sublayer(x))

**Residual connections** (He et al., 2016)

Instead of  $X^{(i)} = \text{Layer}(X^{(i-1)})$  (*i* represents the layer)

$$X^{(i-1)}$$
 — Layer  $\longrightarrow X^{(i)}$ 

We let  $X^{(i)} = X^{(i-1)} + Layer(X^{(i-1)})$ , so we only need to learn "the residual" from the previous layer

$$X^{(i-1)} \longrightarrow Layer \xrightarrow{\bullet} X^{(i)}$$

Gradient through the residual connection is 1 - good for propagating information through layers

### Residual connection & layer normalization Add & Norm: LayerNorm(x + Sublayer(x))

Layer normalization (Ba et al., 2016) helps train model faster

Idea: normalize the hidden vector values to unit mean and stand deviation within each layer

[advanced]

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

 $\gamma, \beta \in \mathbb{R}^d$  are learnable parameters

## Transformer decoder



From the bottom to the top: Output embedding Positional encoding A stack of Transformer decoder layers • Linear + softmax

Transformer decoder is a stack of N layers, which consists of three sub-layers:

- Masked multi-head attention
- Multi-head cross-attention
- Feed-forward layer
- (W/ Add & Norm between sub-layers)

## Masked (casual) self-attention

• Key: You can't see the future text for the decoder!



• Solution: for every  $\mathbf{q}_i$ , only attend to  $\{(\mathbf{k}_j, \mathbf{v}_j)\}, j \in i$ How to implement this? Masking!

https://jalammar.github.io/illustrated-gpt2/

### Masked multi-head attention

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q$$
,  $\mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K$ ,  $\mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V$ 

$$e_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{p_{dk}}, 8j = 1, \dots, n$$

$$= \operatorname{softmax}(e_i)$$

Efficient implementation: compute attention as we normally do, mask out attention to future words by setting attention scores to  $-\infty$ 



raw attention weights



```
dot = torch.bmm(queries, keys.transpose(1, 2))
```

```
indices = torch.triu indices(t, t, offset=1)
```

```
dot[:, indices[0], indices[1]] = float('-inf')
```

```
dot = F.softmax(dot, dim=2)
```

### http://peterbloem.nl/blog/transformers

### Masked (multi-head) attention

The following matrix denotes the values of  $\frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}$  for

| 1  | 0  | -1 | -1 |  |
|----|----|----|----|--|
| 1  | 1  | -1 | 0  |  |
| 0  | 1  | 1  | -1 |  |
| -1 | -1 | 2  | 1  |  |

What should be the value of  $\alpha_{2,2}$  in masked attention?

(A) 0 (B) 0.5 (C)  $\frac{e}{2e + e^{-1}}$ 

(D) 1

The correct answer is (B)



$$1 \le i \le n, 1 \le j \le n \ (n = 4)$$

$$\frac{e}{e^{-1}+1}$$

## Multi-head cross-attention

Attention



### Similar as the attention we learned in the previous lecture



## Multi-head cross-attention

### **Self-attention:**

$$\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{Q}, \mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{K}, \mathbf{v}_{i} = \mathbf{x}_{i} \mathbf{W}^{V}$$
$$\mathbf{x}_{i} \mathbf{W}^{V} = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\rho_{d_{k}}}, 8j = 1, \dots, n$$

$$= \operatorname{softmax}(e_1)$$

 $\mathbf{h}_i = \mathbf{X}_{i,j} \mathbf{v}_j$ 

j=1

### **Cross-attention:**

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{v}$$

$$\mathbf{k}_j = \tilde{\mathbf{x}}_j \mathbf{V}_j$$

$$e_{i,j} = \frac{\mathbf{q}_i}{p}$$

$$= SO^{\dagger}$$

*j*=1

(always from the top layer) hidden states from encoder hidden states from decoder  $\mathbf{W}^{Q}$  i = 1, 2, ..., n $\mathbf{W}^{K}$ ,  $\mathbf{v}_{j} = \tilde{\mathbf{x}}_{j} \mathbf{W}^{V}$ ,  $\forall j = 1, 2, ..., m$  $\frac{\mathbf{i} \cdot \mathbf{k}_j}{\rho}, 8j = 1, \dots, m$ oftmax( $e_i$ )  $\mathbf{h}_i = - \mathbf{v}_{i,j} \mathbf{v}_j$ 

## Transformer encoder-decoder



## Transformer encoder-decoder



[input sequence]

[output sequence]



### Training Transformer encoder-decoder models

The same as the way that we train seq2seq models before!

Training data: parallel corpus  $\{(\mathbf{w}^{(s)}, \mathbf{w}^{(t)})\}$ 

Minimize cross-entropy loss: 

$$\sum_{t=1}^{T} -\log P(y_t | y_1, \dots, y_{t-1}, \mathbf{w}^{(s)})$$
(denote  $\mathbf{w}^{(t)} = y_1, \dots, y_T$ )

Back-propagate gradients through both encoder and decoder  $\bullet$ 

### Masked self-attention is the key!

This can enable parallelizable operations while NOT looking at the future



## Empirical results with Transformers

| Madal                           | BL    | EU    | Training Cost (FLOP |                    |
|---------------------------------|-------|-------|---------------------|--------------------|
| Model                           | EN-DE | EN-FR | EN-DE               | EN-FR              |
| ByteNet [15]                    | 23.75 |       |                     |                    |
| Deep-Att + PosUnk [32]          |       | 39.2  |                     | $1.0\cdot 10^{20}$ |
| GNMT + RL [31]                  | 24.6  | 39.92 | $2.3\cdot 10^{19}$  | $1.4\cdot 10^{20}$ |
| ConvS2S [8]                     | 25.16 | 40.46 | $9.6\cdot10^{18}$   | $1.5\cdot 10^{20}$ |
| MoE [26]                        | 26.03 | 40.56 | $2.0\cdot 10^{19}$  | $1.2\cdot 10^{20}$ |
| Deep-Att + PosUnk Ensemble [32] |       | 40.4  |                     | $8.0\cdot 10^{20}$ |
| GNMT + RL Ensemble [31]         | 26.30 | 41.16 | $1.8\cdot 10^{20}$  | $1.1\cdot 10^{21}$ |
| ConvS2S Ensemble [8]            | 26.36 | 41.29 | $7.7\cdot 10^{19}$  | $1.2\cdot 10^{21}$ |
| Transformer (base model)        | 27.3  | 38.1  | 3.3 •               | 10 <sup>18</sup>   |
| Transformer (big)               | 28.4  | 41.0  | 2.3 ·               | $10^{19}$          |

(Vaswani et al., 2017)

Test sets: WMT 2014 English-German and English-French

### Empirical results with Transformers

### Model

seq2seq-attention, L = 500Transformer-ED, L = 500Transformer-D, L = 4000Transformer-DMCA, no MoE-layer, L = 11000Transformer-DMCA, MoE-128, L = 11000Transformer-DMCA, MoE-256, L = 7500

ED: encoder-decoder, D: decoder

DMCA: decoder with memory-compressed attention

MoE: mixture of experts

(Liu et al., 2018): Generating Wikipedia by Summarizing Long Sequences

| Test perplexity | <b>ROUGE-L</b>                                      |
|-----------------|-----------------------------------------------------|
| 5.04952         | 12.7                                                |
| 2.46645         | 34.2                                                |
| 2.22216         | 33.6                                                |
| 2.05159         | 36.2                                                |
| 1.92871         | 37.9                                                |
| 1.90325         | 38.8                                                |
|                 | 5.04952<br>2.46645<br>2.22216<br>2.05159<br>1.92871 |

# Transformer-based language models

• The model architecture of GPT-3, ChatGPT, ...



## Transformer architecture specifications

|      | N | $d_{\rm model}$ | $d_{ m ff}$ | h | $d_k$ | $d_v$ |
|------|---|-----------------|-------------|---|-------|-------|
| base | 6 | 512             | 2048        | 8 | 64    | 64    |

| From Vaswani e        | t al.           |                 |                |                |               | $\rightarrow$ Add & No |
|-----------------------|-----------------|-----------------|----------------|----------------|---------------|------------------------|
| Model Name            | $n_{ m params}$ | $n_{ m layers}$ | $d_{ m model}$ | $n_{ m heads}$ | $d_{ m head}$ | Feed<br>Forward        |
| GPT-3 Small           | 125M            | 12              | 768            | 12             | 64            |                        |
| GPT-3 Medium          | 350M            | 24              | 1024           | 16             | 64            | d <sub>model</sub>     |
| GPT-3 Large           | 760M            | 24              | 1536           | 16             | 96            | Add & No               |
| GPT-3 XL              | 1.3B            | 24              | 2048           | 24             | 128           | Multi-Hea              |
| GPT-3 2.7B            | 2.7B            | 32              | 2560           | 32             | 80            | Attentior              |
| GPT-3 6.7B            | 6.7 <b>B</b>    | 32              | 4096           | 32             | 128           |                        |
| GPT-3 13B             | 13.0B           | 40              | 5140           | 40             | 128           |                        |
| GPT-3 175B or "GPT-3" | 175.0B          | 96              | 12288          | 96             | 128           | d <sub>model</sub>     |

From GPT-3;  $d_{head}$  is our  $d_k$ 

## The Annotated Transformer

### The Annotated Transformer

### Attention is All You Need

Ashish Vaswani\* Google Brain avaswani@google.com

Noam Shazeer\* Google Brain noam@google.com

Niki Parmar\* Google Research nikip@google.com

Jakob Uszkoreit\* Google Research usz@google.com

Llion Jones\* **Google Research** llion@google.com

Aidan N. Gomez\* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\* <sup>‡</sup> illia.polosukhin@gmail.com

• v2022: Austin Huang, Suraj Subramanian, Jonathan Sum, Khalid Almubarak, and Stella Biderman.

• Original: Sasha Rush.

### http://nlp.seas.harvard.edu/annotated-transformer/

Table of Contents

- Prelims
- <u>Background</u>
- Part 1: Model Architecture
- Model Architecture
  - Encoder and Decoder Stacks
  - Position-wise Feed-Forward Networks
  - Embeddings and Softmax
  - Positional Encoding
  - Full Model
  - Inference:
- Part 2: Model Training

## Understanding Transformers



Which of the following is CORRECT?

(A)Multi-head attention is more computationally expensive than feedforward layers

(B)Multi-head attention is more computationally expensive than single-head attention

(C) It is hard to apply Transformers to sequences that are longer than the pre-defined max\_seq\_length L

(D) We can easily scale Transformers to long sequences

The correct answer is (C)



## Transformers: pros and cons

- Easier to capture long-range dependencies: we draw attention between every pair of words!
- **Easier to parallelize:**

$$\begin{split} Q &= X W^Q \qquad K = X W^K \qquad V = X W^V \\ & \text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V \end{split}$$

### • Are positional encodings enough to capture positional information?

Otherwise self-attention is an unordered function of its input

### Quadratic computation in self-attention

Can become very slow when the sequence length is large

## Quadratic computation as a function of sequence length $Q = XW^Q$ $K = XW^K$ $V = XW^V$



Need to compute  $n^2$  pairs of scores (= dot product) RNNs only require  $O(nd^2)$  running time:  $\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$ 

(assuming input dimension = hidden dimension = d)

product) O(n<sup>2</sup>d)

## Quadratic computation as a function of sequence length

Need to compute  $n^2$  pairs of scores (= dot product)



What if we want to scale  $n \ge 50,000$ ? For example, to work on long documents?



(Tay et al., 2020): Efficient Transformers: A Survey

## Example: Linformer

Key idea: The attention matrix  $e_{i,j}$  can be approximated by a low-rank matrix

Map the sequence length dimension to a lower-dimensional space for values, keys



(Wang et al., 2020): Linformer: Self-Attention with Linear Complexity



# Example: Longformer / Big Bird

Key idea: use sparse attention patterns!



(Beltagy et al., 2020): Longformer: The Long-Document Transformer



(Zaheer et al., 2021): Big Bird: Transformers for Longer Sequences



(c) Dilated sliding window

(d) Global+sliding window

# Vision Transformer (ViT)



(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale



### Music Transformer





(Huang et al., 2018): Music Transformer: Generating Music with Long-Term Structure

https://magenta.tensorflow.org/music-transformer