

AIE1007: Natural Language Processing

L14:Transformers (cont'd)

Autumn 2024

Attention as a soft, averaging lookup table

We can think of **attention** as performing fuzzy lookup a in **key-value store**

Lookup table: a table of keys that map to values. The query matches one of the keys, returning its value.

Attention: The query matches to all keys softly to a weight between 0 and 1. The keys' values are multipled by the weights and summed.

Self-attention

A self-attention layer maps a sequence of input vectors $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^{d_1}$ to a sequence of *n* vectors: $\mathbf{h}_1, ..., \mathbf{h}_n \in \mathbb{R}^{d_2}$

Step #1: Transform each input vector into three vectors: query, key, and value vectors

$$
\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q \in \mathbb{R}^{d_q} \qquad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K \in \mathbb{R}^{d_k} \qquad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V \in \mathbb{R}^{d_v}
$$

$$
\mathbf{W}^Q \in \mathbb{R}^{d_1 \times d_q} \qquad \mathbf{W}^K \in \mathbb{R}^{d_1 \times d_k} \qquad \mathbf{W}^V \in \mathbb{R}^{d_1 \times d_v}
$$

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax For each **q***ⁱ* , compute attention scores and attention distribution:

$$
e_{i,j}=\frac{\mathbf{q}_i\cdot\mathbf{k}_j}{\rho}\,,\delta j=1,\ldots,n
$$

$$
\begin{aligned} \n\overrightarrow{A} &= \text{softmax}(e_i) \\ \n\overrightarrow{A}_{j} &= \frac{\text{exp}(e_{i,j})}{h} \\ \n\overrightarrow{R} &= 1 \text{exp}(e_{i,k}) \n\end{aligned}
$$

Self-attention

A self-attention layer maps a sequence of input vectors $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^{d_1}$ to a sequence of *n* vectors: $\mathbf{h}_1, ..., \mathbf{h}_n \in \mathbb{R}^{d_2}$ Input

 \leftarrow *i*,*j* **v***j* 2 R^d_v

https://jalammar.github.io/illustrated-transformer/

Step #3: Compute output for each input

as weighted sum of values

 $\mathbf{h}_i =$

n

X

 $j = 1$

Queries

Keys

Values

Score

Softmax

Softmax X Value

Sum

Transformer encoder: let's put things together

From the bottom to the top:

- Input embedding
- Positional encoding
- ^A stack of Transformer encoder layers

- Multi-head attention layer
- Feed-forward layer

Transformer encoder is a stack of *N* layers, which

$\mathbf{a}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{d_1}$ **h**₁, ..., **h**_{*n*} $\in \mathbb{R}^{d_2}$

consists of two sub-layers:

$$
\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^{d_1}
$$

Residual connection & layer normalization Add & Norm: LayerNorm $(x + Sublayer(x))$

Residual connections (He et al., 2016)

Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (*i* represents the layer)

$$
X^{(i-1)} \longrightarrow \text{Layer} \longrightarrow X^{(i)}
$$

We let $X^{(i)} = X^{(i-1)} + \operatorname{Layer}(X^{(i-1)})$, so we only need to learn "the residual" from the previous layer

$$
X^{(i-1)} \longrightarrow \text{Layer} \longrightarrow X^{(i)}
$$

Gradient through the residual connection is 1 - good for propagating information through layers

Residual connection & layer normalization Add & Norm: LayerNorm $(x + Sublayer(x))$

Layer normalization (Ba et al., 2016) helps train model faster

Idea: normalize the hidden vector values to unit mean and stand deviation within each layer

[advanced]

$$
y=\frac{x-\mathrm{E}[x]}{\sqrt{\mathrm{Var}[x]+\epsilon}}*\gamma+\beta
$$

γ, *β* ∈ ℝ^{*d*} are learnable parameters

Transformer decoder

Transformer decoder is a stack of *N* layers, which consists of three sub-layers:

- Masked multi-head attention
- Multi-head cross-attention
- Feed-forward layer
- (W/ Add & Norm between sub-layers)

From the bottom to the top: Output embedding Positional encoding A stack of Transformer decoder layers • Linear + softmax •
● • •

-
-
-
-

Masked (casual) self-attention

• Key: You can't see the future text for the decoder!

• Solution: for every q_i , only attend to $\{(\mathbf{k}_j, \mathbf{v}_j)\}, j \neq i$ How to implement this? Masking!

https://jalammar.github.io/illustrated-gpt2/

Masked multi-head attention

<http://peterbloem.nl/blog/transformers>

$$
\rightarrow = \text{softmax}(e_i)
$$

Efficient implementation: compute attention as we normally do, mask out attention to future words by setting attention scores to −∞

raw attention weights

mask

```
dot = torch.bmm(queries, keys.transpose(1, 2))
```

```
indices = torch.triu indices(t, t, offset=1)
```

```
dot[:, indices[0], indices[1]] = float('-inf')
```

```
dot = F.softmax(dot, dim=2)
```

$$
\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbb{Q}}, \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K, \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V
$$

$$
e_{i,j}=\frac{\mathbf{q}_i\cdot\mathbf{k}_j}{p_{dk}},\delta j=1,\ldots,n
$$

Masked (multi-head) attention

The following matrix denotes the values of $\frac{u}{\sqrt{u}}$ for $1 \le i \le n, 1 \le j \le n$ $(n = 4)$ $\mathbf{q}_i \cdot \mathbf{k}_j$ *dk*

> (A) 0 (B) 0.5 (C) (D) 1

$$
\frac{e}{2e+e^{-1}+1}
$$

The correct answer is (B)

What should be the value of $\alpha_{2,2}$ in masked attention?

Multi-head cross-attention

Similar as the attention we learned in the previous lecture

Multi-head cross-attention

Self-attention:

$$
\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbb{Q}}, \mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{K}, \mathbf{v}_{i} = \mathbf{x}_{i} \mathbf{W}^{V}
$$
\n
$$
\mathbf{e}_{i,j} = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\rho_{d_{k}}}, \delta_{j} = 1, \ldots, n
$$

$$
\mathcal{A} = \text{softmax}(\mathbf{e}_i)
$$

n

X

 $j = 1$

 $\mathbf{h}_i =$

↵*i,j***v***^j*

 $q_i = x_i W^Q$ $i = 1, 2, ..., n$ $\mathbf{k}_j = \tilde{\mathbf{x}}_j \mathbf{W}^K$, $\mathbf{v}_j = \tilde{\mathbf{x}}_j \mathbf{W}^V$ $\forall j = 1, 2, ..., m$ ↵*ⁱ* = softmax(**e***i*) ↵*i,j***v***^j* **q**ⁱ *·***k***^j dk ,8j* = 1*,...,m* hidden states from encoder **x**1*, . . . ,* **x***ⁿ* : hidden states from decoder (always from the top layer)

$$
\frac{1}{\mathbf{h}_i} = \frac{1}{\sqrt{2\pi}}
$$

 $j = 1$

$$
e_{i,j} = \frac{\mathbf{q_i}}{p}
$$

$$
\tilde{\mathbf{x}}_1,\ldots,\tilde{\mathbf{x}}_m:
$$

$$
\mathbf{X}_1,\ldots,\mathbf{X}_n:
$$

$$
\mathbf{q}_i = \mathbf{x}_i
$$

$$
k_j = \tilde{x}_j V
$$

Cross-attention:

Transformer encoder-decoder

Transformer encoder-decoder

[input sequence]

[output sequence]

Training Transformer encoder-decoder models

The same as the way that we train seq2seq models before!

$$
\sum_{t=1}^{T} -\log P(y_t | y_1, \dots, y_{t-1}, \mathbf{w}^{(s)})
$$

(denote $\mathbf{w}^{(t)} = y_1, \dots, y_T$)

• Back-propagate gradients through both encoder and decoder

• Training data: parallel corpus {(**w**(*s*) , **w**(*t*))} *i i*

• Minimize cross-entropy loss:

Masked self-attention is the key!

This can enable parallelizable operations while NOT looking at the future

Empirical results with Transformers

(Vaswani et al., 2017)

Test sets: WMT 2014 English-German and English-French

Empirical results with Transformers

Model

seq2seq-attention, $L = 500$ Transformer-ED, $L = 500$ Transformer-D, $L = 4000$ Transformer-DMCA, no MoE-layer, $L = 11000$ Transformer-DMCA, MoE-128, $L = 11000$ Transformer-DMCA, MoE-256, $L = 7500$

(Liu et al., 2018): Generating Wikipedia by Summarizing Long Sequences

ED: encoder-decoder, D: decoder

DMCA: decoder with memory-compressed attention

MoE: mixture of experts

Transformer-based language models

• The model architecture of GPT-3, ChatGPT, …

Transformer architecture specifications

 \mathbf{r}

From GPT-3; d_{head} is our d_k

The Annotated Transformer

The Annotated Transformer

Attention is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez^{*} [†] University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* \ddagger illia.polosukhin@gmail.com

• v2022: Austin Huang, Suraj Subramanian, Jonathan Sum, Khalid Almubarak, and Stella Biderman.

· Original: Sasha Rush.

<http://nlp.seas.harvard.edu/annotated-transformer/>

Table of Contents

- Prelims
- · Background
- · Part 1: Model Architecture
- Model Architecture
	- **Encoder and Decoder Stacks**
	- · Position-wise Feed-Forward Networks
	- **Embeddings and Softmax**
	- **O** Positional Encoding
	- **Pull Model**
	- o Inference:
- · Part 2: Model Training

Understanding Transformers

Which of the following is CORRECT?

(A)Multi-head attention is more computationally expensive than feedforward layers

(B)Multi-head attention is more computationally expensive than single-head attention

(C)It is hard to apply Transformers to sequences that are longer than the pre-defined max_seq_length L

(D) We can easily scale Transformers to long sequences

The correct answer is (C)

Transformers: pros and cons

- **Easier to capture long-range dependencies**: we draw attention between every pair of words!
- **Easier to parallelize:**

$$
Q = X W^{Q} \qquad K = X W^{K} \qquad V = X W^{V}
$$

Attention(Q, K, V) = softmax($\frac{QK^{T}}{\sqrt{d_k}}$)V

• Are positional encodings enough to capture positional information?

Otherwise self-attention is an unordered function of its input

• Quadratic computation in self-attention

Can become very slow when the sequence length is large

Quadratic computation as a function of sequence length $Q = XW^Q$ $K = XW^K$ $V = XW^V$

Need to compute n^2 pairs of scores (= dot product) RNNs only require *O*(*nd* 2) running time: $$

 $(assuming input dimension = hidden dimension = d)$

 $O(n^2d)$

Quadratic computation as a function of sequence length

Need to compute n^2 pairs of scores (= dot product) O(*n*

What if we want to scale $n \geq 50,000$? For example, to work on long documents?

(Tay et al., 2020): Efficient Transformers: A Survey

Example: Linformer

Key idea: The attention matrix $e_{i,j}$ can be approximated by a low-rank matrix

(Wang et al., 2020): Linformer: Self-Attention with Linear Complexity

Map the sequence length dimension to a lower-dimensional space for values, keys

Example: Longformer / Big Bird

Key idea: use sparse attention patterns!

(c) Dilated sliding window

(Beltagy et al., 2020): Longformer: The Long-Document Transformer

(Zaheer et al., 2021): Big Bird: Transformers for Longer Sequences

(d) Global+sliding window

Vision Transformer (ViT)

(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Music Transformer

https://magenta.tensorflow.org/music-transformer

(Huang et al., 2018): Music Transformer: Generating Music with Long-Term Structure