
AIE1007: Natural Language Processing

L14:Transformers (cont’d)

Autumn 2024

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup a in key-value store

Lookup table: a table of keys that map to

values. The query matches one of the keys,

returning its value.

Attention: The query matches to all keys

softly to a weight between 0 and 1. The

keys’ values are multipled by the weights

and summed.

Self-attention
A self-attention layer maps a sequence of input vectors x1,…, xn ∈ℝ

d1 to a

sequence of n vectors: h1,…, hn ∈ℝ
d2

Step #1: Transform each input vector into three vectors: query, key, and value vectors

qi = xiW
Q ∈ℝdq

WQ ∈ℝd1×dq

ki = xiW
K ∈ℝdk

WK ∈ℝd1×dk

vi = xiW
V ∈ℝdv

WV ∈ℝd1×dv

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax

For each qi, compute attention scores and attention distribution:

ei,j =
qi ·kj
p
dk

,8j = 1, . . . ,n
↵i = softmax(ei)

exp(ei,j)↵i,j = P n

k=1 exp(ei,k)

Self-attention
A self-attention layer maps a sequence of input vectors x1,…, xn ∈ℝ

d1 to a

sequence of n vectors: h1,…, hn ∈ℝ
d2

https://jalammar.github.io/illustrated-transformer/

Step #3: Compute output for each input

as weighted sum of values

n

hi =
X

↵i,jvj 2 Rdv

j=1

h1 h2

Transformer encoder: let’s put things together

From the bottom to the top:

• Input embedding

• Positional encoding

• A stack of Transformer encoder layers

Transformer encoder is a stack of N layers, which

consists of two sub-layers:

• Multi-head attention layer

• Feed-forward layer

x1,…, xn ∈ℝ
d1 h1,…, hn ∈ℝ

d2

Residual connection & layer normalization
Add & Norm:

Residual connections (He et al., 2016)

Instead of X(i) = Layer(X(i−1)) (i represents the layer)

We let X(i) = X(i−1) + Layer(X(i−1)), so we only need to learn “the

residual” from the previous layer

Gradient through the residual connection is 1 - good for propagating information through layers

Residual connection & layer normalization
Add & Norm:

Layer normalization (Ba et al., 2016) helps train model faster

Idea: normalize the hidden vector values to unit mean and stand deviation within each layer

[advanced]

γ, β∈ℝd are learnable parameters

Transformer decoder

From the bottom to the top:

Output embedding

Positional encoding
A stack of Transformer decoder layers

Linear + softmax

Transformer decoder is a stack of N layers, which

consists of three sub-layers:

• Masked multi-head attention

• Multi-head cross-attention

• Feed-forward layer

• (W/ Add & Norm between sub-layers)

•
•
•
•Cross-attention

between source

and target sequence

Self-attention

within target

sequence

Masked (casual) self-attention

• Key: You can’t see the future text for the decoder!

• Solution: for every qi , only attend to { (kj ,vj)} , j i

How to implement this? Masking!

https://jalammar.github.io/illustrated-gpt2/

Masked multi-head attention

http://peterbloem.nl/blog/transformers

↵i = softmax(ei)

Efficient implementation: compute

attention as we normally do, mask out

attention to future words by setting

attention scores to −∞

qi = xiWQ ,ki = xiWK ,vi = xiWV

ei,j =
qi ·kj
p
dk

,8j = 1, . . . ,n

http://peterbloem.nl/blog/transformers

Masked (multi-head) attention

The following matrix denotes the values of for 1 ≤ i ≤ n,1 ≤ j ≤ n (n = 4)
qi ⋅kj

dk

What should be the value of α2,2 in masked attention?

(A) 0

(B) 0.5

(C)
2e + e−1 + 1

(D) 1

The correct answer is (B)

e

1 0 -1 -1

1 1 -1 0

0 1 1 -1

-1 -1 2 1

Multi-head cross-attention

Cross-attention

between source and

target sequence

Similar as the attention we

learned in the previous lecture

Multi-head cross-attention

qi = xiWQ

i = 1,2,…, n

∀j = 1,2,…,m

ei,j =
qi ·kj

Self-attention:

qi = xiWQ ,ki = xiWK ,vi =

xiWV

p
dk

,8j = 1, . . . ,n

↵i = softmax(ei)

n

hi =
X

↵i,jvj
j=1

↵i = softmax(ei)
m

hi =
X

↵i,jvj
j=1

ei,j =
q ·ki j

p
dk

,8j = 1, . . . ,m

: hidden states from encoder

x1, . . . ,xn : hidden states from decoder

(always from the top layer)

x̃1, . . . , x̃m

Cross-attention:

kj = x̃jWK ,vj = x̃jWV

Transformer encoder-decoder

softmax(Wohi)

Transformer encoder-decoder

Transformer encoder-decoder

Training Transformer encoder-decoder models
The same as the way that we train seq2seq models before!

English:hello world .

12M sentence pairs

French: bonjour le monde .

•

• Minimize cross-entropy loss:

T

∑ − log P(yt |y1, . . . , yt−1,w
(s))

t=1
(denote w(t) = y1,…, yT)

• Back-propagate gradients through both encoder and decoder

Masked self-attention is the key!

This can enable parallelizable operations while NOT looking at the future

Training data: parallel corpus {(w(s),w(t))}
i i

Empirical results with Transformers

(Vaswani et al., 2017)

Test sets: WMT 2014 English-German and English-French

Empirical results with Transformers

(Liu et al., 2018): Generating Wikipedia by Summarizing Long Sequences

ED: encoder-decoder, D: decoder

DMCA: decoder with memory-compressed attention

MoE: mixture of experts

Transformer-based language models

• The model architecture of GPT-3, ChatGPT, …

Transformer architecture specifications

The Annotated Transformer

http://nlp.seas.harvard.edu/annotated-transformer/

http://nlp.seas.harvard.edu/annotated-transformer/

Understanding Transformers

Which of the following is CORRECT?

(A)Multi-head attention is more computationally expensive than

feedforward layers

(B)Multi-head attention is more computationally expensive than

single-head attention

(C)It is hard to apply Transformers to sequences that are longer than

the pre-defined max_seq_length L

(D) We can easily scale Transformers to long sequences

The correct answer is (C)

Transformers: pros and cons

•

•

Easier to capture long-range dependencies: we draw attention between every pair of words!

Easier to parallelize:

Q = X W Q K = X W K V = X W V

• Are positional encodings enough to capture positional information?

Otherwise self-attention is an unordered function of its input

• Quadratic computation in self-attention

Can become very slow when the sequence length is large

Quadratic computation as a function of sequence length
Q = X W Q K = X W K V = X W V

n×dq dk×n

n×dv

Need to compute n2 pairs of scores (= dot product)

RNNs only require O(nd2) running time:

ht = g(Wht−1 + Uxt + b)

(assuming input dimension = hidden dimension = d)

O(n2d)

Quadratic computation as a function of sequence length

Need to compute n2 pairs of scores (= dot product) O(n2d)

Max sequence length = 1,024 in GPT-2

What if we want to scale n ≥ 50,000? For example, to work on long documents?

Efficient Transformers

(Tay et al., 2020): Efficient Transformers: A Survey

Example: Linformer

(Wang et al., 2020): Linformer: Self-Attention with Linear Complexity

Key idea: The attention matrix ei, j can be approximated by a low-rank matrix

Map the sequence length dimension to a lower-dimensional space for values, keys

Ei, Fi ∈ℝ
k×n

Example: Longformer / Big Bird

Key idea: use sparse attention patterns!

(Beltagy et al., 2020): Longformer: The Long-Document Transformer

(Zaheer et al., 2021): Big Bird: Transformers for Longer Sequences

Vision Transformer (ViT)

(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Music Transformer

https://magenta.tensorflow.org/music-transformer

(Huang et al., 2018): Music Transformer: Generating Music with Long-Term Structure

