

AIE1007: Natural Language Processing

LI3: Self-attention and Transformers

Autumn 2024

Recap: Attention

Note that $h_1^{enc}, \ldots, h_n^{enc}$ and h_t^{dec} are hidden states from encoder and decoder RNNs..

- Encoder hidden states: $h_1^{enc}, \ldots, h_n^{enc}$ (n: # of words in source sentence)
- Decoder hidden state at : ht^{dec}
 time
- Attention scores:

 $e^{t} = [g(h_{1}^{enc}, h_{t}^{dec}), \dots, g(h_{n}^{enc}, h_{t}^{dec})] \in \mathbb{R}^{n}$

Attention distribution:

 $\alpha^t = \operatorname{softmax}(e^t) \in \mathbb{R}^n$

• Weighted sum of encoder hidden states: $a_t = \sum_{i=1}^{n} \alpha_i^t h_i^{enc} \in \mathbb{R}^h$

Combine a_t and h_t^{dec} to predict next word

Recap:Attention

- Attention addresses the "bottleneck" or fixed representation problem
- Attention learns the notion of **alignment** "Which source words are more relevant to the current target word?"

https://jalammargithub.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

a student

n /3	hidden state #3	hidden state #3
n #2	hidden state #2	

Attention as a soft, averaging lookup table

We can think of **attention** as performing fuzzy lookup a in **key-value store**

Lookup table: a table of keys that map to values. The query matches one of the keys, returning its value.

Attention: The query matches to all keys softly to a weight between 0 and 1. The keys' values are multipled by the weights and summed.

(So far, we assume key = value)

Understanding attention

Do you understand attention now?

(A) I understand the concept of attention and what it is for(B) I understand the concept + its mathematical formulations(C) I am still struggling

Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

(Vaswani et al., 2017)

Transformer encoder-decoder

- Transformer encoder + Transformer decoder
- First designed and experimented on NMT
- Can be viewed as a replacement for seq2seq + attention based on RNNs

Transformer encoder-decoder

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^h$$

Issues with recurrent NNs

Longer sequences can lead to vanishing gradients \implies It is hard to capture **long**distance information

- RNNs lack parallelizability
 - Forward and backward passes have O(sequence length) unparallelizable operations
 - GPUs can perform a bunch of independent computations at once!
 - Inhibits training on very large datasets

RNNs / LSTMs seq2seq seq2seq + attention attention only = Transformers! Transformers have become a new building block to replace RNNs

Transformers: roadmap

- From attention to self-attention
- From self-attention to multi-head self-attention
- Feedforward layers
- Positional encoding
- Residual connections + layer normalization
- Transformer encoder vs Transformer decoder

Reminder: we will ask you to implement Transformer encoderdecoder in A4!

Attention in a general form

- Assume that we have a set of values $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^{d_v}$ and a query vector $\mathbf{q} \in \mathbb{R}^{d_q}$
- Attention always involves the following steps:
 - Computing the attention scores $\mathbf{e} = g(\mathbf{q}, \mathbf{v}_i) 2 \mathbb{R}^n$
 - Taking softmax to get **attention distribution** :
 - $= \operatorname{softmax}(e) 2 \mathbb{R}^n$
 - Using attention distribution to take **weighted sum** of values:

$$\mathbf{a} = \mathbf{X}_{i=1} \mathbf{v}_i \mathbf{2} \mathbf{R}_i$$

 $\mathbf{z} d_v$

Attention in a general form

- A more general form: use a set of keys and values $(\mathbf{k}_1, \mathbf{v}_1), \dots, (\mathbf{k}_n, \mathbf{v}_n), \mathbf{k}_i \in \mathbb{R}^{d_k}, \mathbf{v}_i \in \mathbb{R}^{d_v}$ keys are used to compute the attention scores and values are used to compute the output vector
- Attention always involves the following steps:
 - Computing the attention scores $e = g(q, k_i) 2 R^n$
 - Taking softmax to get **attention distribution** :

$$= \operatorname{softmax}(e) 2 F$$

• Using attention distribution to take **weighted sum** of values:

$$\mathbf{a} = \mathbf{X}_{i=1} \mathbf{v}_i 2 \mathbf{R}^a$$

 R^n

 d_V

- In NMT, query = decoder hidden state, keys = values = encoder hidden states
- Self-attention = attention from the sequence to itself
- Self-attention: let's use each word in a sequence as the query, and all the other words in the sequence as keys and values.

A self-attention layer maps a sequence of input vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{d_1}$ to a sequence of *n* vectors: $\mathbf{h}_1, \ldots, \mathbf{h}_n \in \mathbb{R}^{d_2}$

• The same abstraction as RNNs - used as a drop-in replacement for an RNN layer $\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$

$$\mathbf{k}_{i} = \mathbf{W}^{(k)} \mathbf{x}_{i}, \quad \mathbf{v}_{i} = \mathbf{W}^{(v)} \mathbf{x}_{i}, \\ \left(\frac{\exp(\mathbf{q}_{i} \cdot \mathbf{k}_{j}/\sqrt{d})}{\sum_{j'=1}^{n} \exp(\mathbf{q}_{i} \cdot \mathbf{k}_{j'}/\sqrt{d})} \mathbf{v}_{j}\right)$$

Step #1: Transform each input vector into three vectors: query, key, and value vectors

$$\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{Q} \in \mathbb{R}^{d_{q}} \qquad \mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{K} \in \mathbb{R}^{d_{k}} \qquad \mathbf{v}_{i} = \mathbf{x}_{i} \mathbf{W}^{V} \in \mathbb{R}^{d_{v}}$$
$$\mathbf{W}^{Q} \in \mathbb{R}^{d_{1} \times d_{q}} \qquad \mathbf{W}^{K} \in \mathbb{R}^{d_{1} \times d_{k}} \qquad \mathbf{W}^{V} \in \mathbb{R}^{d_{1} \times d_{v}}$$

Note that we use row vectors here; It is also common to write $\mathbf{q}_i = \mathbf{W}^Q \mathbf{x}_i \in \mathbb{R}^{d_q}$ for $\mathbf{x}_i = a$ column vector

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax For each \mathbf{q}_i , compute attention scores and attention distribution:

$$\mathbf{A}_{j,j} = \operatorname{softmax}(\frac{\mathbf{q}_{j} \cdot \mathbf{k}_{j}}{\rho d_{k}}) \qquad \text{Inplue}$$

aka. "scaled dot product" It must be $d_q = d_k$ in this case

Keys

Q. Why scaled dot product? Values

Score To avoid the dot product to become too large for larger d_k ; scaling the dot product by $\sqrt{d_k}$

is easier for optimization

Step #3: Compute output for each input	
as weighted sum of values	Embed
×.	Querie
$\mathbf{h}_i = \mathbf{X}_{i,j} \mathbf{v}_j \ 2 \ R^{d_v}$	Keys
$j = 1 \qquad (d_v = d_2)$	Values
	Score
	Divide l
	Softma
	Softma X
	Value
	Sum

Machines Thinking dding X1 X2 **q**₂ q1 es k2 k₁ V1 V2 S $q_1 \cdot k_1 = 112$ $q_1 \cdot k_2 = 96$ by 8 ($\sqrt{d_k}\,$) 14 12 0.88 0.12 ах ax V2 V1 h_2 h_1

Input Embedding What would be the output vector for the word "Thinking" approximately? Queries Keys (a) $0.5\mathbf{v_1} + 0.5\mathbf{v_2}$ Values $0.54V_1 + 0.46V_2$ (b) Score (C) $0.88v_1 + 0.12v_2$ Divide by 8 ($\sqrt{d_k}$) Softmax (d) $0.12\mathbf{v}_1 + 0.88\mathbf{v}_2$ Softmax Х Value (c) is correct.

Sum

Self-attention: matrix notations

 $X 2 \mathbb{R}^{n \to d_1}$ (n = input length)

 $Q = XW^Q$ $K = XW^K$ $V = XW^V$

 $W^Q 2 \mathbb{R}^{d_1 \rightarrow d_q}, W^K 2 \mathbb{R}^{d_1 \rightarrow d_k}, W^V 2 \mathbb{R}^{d_1 \rightarrow d_v}$

Q: What is this softmax operation?

Multi-head attention

"The Beast with Many Heads"

It is better to use multiple attention functions instead of one! • Each attention function ("head") can focus on different positions.

Multi-head attention

"The Beast with Many Heads"

Finally, we just concatenate all the heads and apply an output projection matrix.

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$
$$head_i = Attention(XW^Q, XW^K, XW^V)$$

- In practice, we use a *reduced* dimension for each head. $W_i^Q 2 R^{d_1 \rightarrow d_q}, W_i^K 2 R^{d_1 \rightarrow d_k}, W_i^V 2 R^{d_1 \rightarrow d_v}$ $d_a = d_k = d_v = d/m$ d = hidden size, m = # of heads If we stack multiple layers, usually $d_1 = d_2 = d_1$ $W^{O} 2 \mathbb{R}^{d \rightarrow d_{\mathcal{Z}}}$
- The total computational cost is similar to that of single-head attention with full dimensionality.

https://jalammar.github.io/illustrated-transformer/

WO

What does multi-head attention learn?

https://github.com/jessevig/bertviz

Missing piece: positional encoding

- Unlike RNNs, self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values
- Solution: Add "positional encoding" to the input embeddings: $\mathbf{p}_i \in \mathbb{R}^d$ for i = 1, 2, ..., n

 $\mathbf{x}_i + \mathbf{p}_i$ \mathbf{X}_i

• **Sinusoidal position encoding**: sine and cosine functions of different frequencies:

$$p_{i} = \begin{pmatrix} \sin(i/10000^{2*1/d}) \\ \cos(i/10000^{2*1/d}) \\ \vdots \\ \sin(i/10000^{2*\frac{d}{2}/d}) \\ \cos(i/10000^{2*\frac{d}{2}/d}) \end{pmatrix}$$

- **Pros**: Periodicity + can extrapolate to longer sequences
- **Cons**: Not learnable

Index in the sequence

Missing piece: positional encoding

- **Learned absolute position encoding:** let all \mathbf{p}_i be learnable parameters
 - $P \in \mathbb{R}^{d \times L}$ for $L = \max$ sequence length
 - **Pros**: each position gets to be learned to fit the data
 - **Cons**: can't extrapolate to indices outside of max sequence length L
 - Most systems use this!

Self-Attention with Relative Position Representations

Peter Shaw Google petershaw@google.com

Jakob Uszkoreit **Google Brain** usz@google.com

Ashish Vaswani **Google Brain** avaswani@google.com

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

Jianlin Su Zhuiyi Technology Co., Ltd. Shenzhen bojonesu@wezhuiyi.com

Ahmed Murtadha Zhuiyi Technology Co., Ltd. Shenzhen mengjiayi@wezhuiyi.com

Yu Lu Zhuiyi Technology Co., Ltd. Shenzhen julianlu@wezhuiyi.com

Bo Wen Zhuiyi Technology Co., Ltd. Shenzhen brucewen@wezhuiyi.com

Shengfeng Pan Zhuiyi Technology Co., Ltd. Shenzhen nickpan@wezhuiyi.com

Yunfeng Liu Zhuiyi Technology Co., Ltd. Shenzhen glenliu@wezhuiyi.com

Adding nonlinearities

- There are no elementwise nonlinearities in self-attention; stacking more self-attention layers just re-averages value vectors
- Simple fix: add a feed-forward network to post-process each output vector

 $FFN(\mathbf{x}_i) = ReLU(\mathbf{x}_i \mathbf{W}_1 + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_2$ $\mathbf{W}_{\mathbf{I}} \ 2 \ \mathsf{R}^{d \rightarrow d_{f f}}, \mathbf{b}_{\mathbf{I}} \ 2 \ \mathsf{R}^{d_{f f}}$ $\mathbf{W}_2 \ 2 \ \mathbf{R}^{d_{f_f}} \rightarrow d_{f_f} \mathbf{b}_2 \ 2 \ \mathbf{R}^d$

In practice, they use $d_{ff} = 4d$

Transformers vs LSTMs

Which of the following statements is correct?

- (a) Transformers have less operations compared to LSTMs
- (b) Transformers are easier to parallelize compared to LSTMs
- (c) Transformers have less parameters compared to LSTMs
- (d) Transformers are better at capturing positional information than LSTMs

(b) is correct.

Transformer encoder: let's put things together

From the bottom to the top:

- Input embedding
- Positional encoding
- A stack of Transformer encoder layers

consists of two sub-layers:

- Multi-head attention layer
- Feed-forward layer

$$\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{d_1}$$

- Transformer encoder is a stack of N layers, which

→ $\mathbf{h}_1, \ldots, \mathbf{h}_n \in \mathbb{R}^{d_2}$

Residual connection & layer normalization Add & Norm: LayerNorm(x + Sublayer(x))

Residual connections (He et al., 2016) Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (*i* represents the layer)

$$X^{(i-1)}$$
 — Layer $\longrightarrow X^{(i)}$

We let $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$, so we only need to learn "the residual" from the previous layer

$$X^{(i-1)} \longrightarrow Layer \xrightarrow{\bullet} X^{(i)}$$

Gradient through the residual connection is 1 - good for propagating information through layers

Residual connection & layer normalization Add & Norm: LayerNorm(x + Sublayer(x))

Layer normalization (Ba et al., 2016) helps train model faster

Idea: normalize the hidden vector values to unit mean and stand deviation within each layer

[advanced]

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

 $\gamma, \beta \in \mathbb{R}^d$ are learnable parameters

Transformer decoder

From the bottom to the top: Output embedding Positional encoding A stack of Transformer decoder layers • Linear + softmax

Transformer decoder is a stack of N layers, which consists of three sub-layers:

- Masked multi-head attention
- Multi-head cross-attention
- Feed-forward layer
- (W/ Add & Norm between sub-layers)