

AIE1007: Natural Language Processing

L13: Self-attention and Transformers

Autumn 2024

Recap:Attention

‣ Weighted sum of encoder hidden states: *n* $a_t = \sum a_i^t h$ *i*=1 $a_i^t h_i^{enc} \in \mathbb{R}^h$

Note that $h_1^{enc}, \ldots, h_n^{enc}$ and h_t^{dec} are hidden states from encoder and decoder RNNs.. 1 \int , \int

- ► Encoder hidden states: $h_1^{enc}, \ldots, h_n^{enc}$ $1 \quad \cdots \quad n$ (n: # of words in source sentence)
- Decoder hidden state at time : *h dec t*
- **EXECUTE:** Attention scores:

 $e^{t} = [g(h_1^{enc}, h_1^{dec}), \ldots, g(h_n^{enc}, h_n^{dec})] \in \mathbb{R}^n$ $1 \t t^{n} t^{n}$ $1 \t t^{n}$ $1^{n} t^{n} t^{n}$

EXECUTE: Attention distribution:

 a^t = softmax (e^t) \in \mathbb{R}^n

Combine a_t and h_t^{dec} to predict next word *t*

Recap:Attention

- \bullet Attention addresses the "bottleneck" or fixed representation problem
- Attention learns the notion of **alignment** "Which source words are more relevant to the current target word?"

https://jalammargithub.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

a student

Attention as a soft, averaging lookup table

We can think of **attention** as performing fuzzy lookup a in **key-value store**

Lookup table: a table of keys that map to values. The query matches one of the keys, returning its value.

Attention: The query matches to all keys softly to a weight between 0 and 1. The keys' values are multipled by the weights and summed.

(So far, we assume key = value)

Do you understand attention now?

(A)I understand the concept of attention and what it is for (B) I understand the concept + its mathematical formulations (C) I am still struggling

Understanding attention

Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* [‡] illia.polosukhin@gmail.com

(Vaswani et al., 2017)

Transformer encoder-decoder

- Transformer encoder + Transformer decoder
- First designed and experimented on NMT
- Can be viewed as ^a replacement for seq2seq ⁺ attention based on RNNs

Transformer encoder-decoder

-
-

-
-

$$
\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^h
$$

Issues with recurrent NNs

• Longer sequences can lead to vanishing gradients \implies It is hard to capture **longdistance information**

- RNNs **lack parallelizability**
	- Forward and backward passes have O(sequence length) unparallelizable operations
	- GPUs can perform a bunch of independent computations at once!
	- Inhibits training on very large datasets

RNNs / LSTMs seq2seq seq2seq + attention attention only = Transformers! Transformers have become a new building block to replace RNNs

Transformers: roadmap

- From attention to self-attention
- From self-attention to multi-head self-attention
- Feedforward layers
- Positional encoding
- Residual connections + layer normalization
- Transformer encoder vs Transformer decoder

Reminder: we will ask you to implement Transformer encoderdecoder in A4!

Attention in a general form

- Assume that we have a set of values $\mathbf{v}_1, ..., \mathbf{v}_n \in \mathbb{R}^{d_v}$ and a <mark>query</mark> vector $\mathbf{q} \in \mathbb{R}^{d_q}$
- Attention always involves the following steps:
	- Computing the attention scores $e = g(q, v_i)$ 2 Rⁿ
	- Taking softmax to get **attention distribution** :
		- ↵= softmax(**e**) *2* R*ⁿ*
	- Using attention distribution to take **weighted sum** of values: •

$$
a = \sum_{i=1}^{R} \sqrt{v_i} \cdot 2R
$$

 Q *d*_{*v*}

Attention in a general form

- \bullet A more general form: use a set of keys and values $(\mathbf{k}_1, \mathbf{v}_1), ..., (\mathbf{k}_n, \mathbf{v}_n), \mathbf{k}_i \in \mathbb{R}^{d_k}, \mathbf{v}_i \in \mathbb{R}^{d_v}$ keys are used to compute the attention scores and values are used to compute the output vector
- Attention always involves the following steps:
	- Computing the attention scores $e = g(q, k_i)$ 2 Rⁿ
	- Taking softmax to get **attention distribution** :

$$
\Box = \text{softmax}(\mathbf{e}) \ 2 \ \mathsf{R}^n
$$

Using attention distribution to take **weighted sum** of values: •

$$
a = \sum_{i=1}^{\infty} \sqrt{v_i} \cdot 2 \cdot R^{d_v}
$$

- In NMT, query = decoder hidden state, keys = values = encoder hidden states
- Self-attention ⁼ attention from the sequence to **itself**
- Self-attention: let's use each word in a sequence as the query, and all the other words in the sequence as keys and values.

A self-attention layer maps a sequence of input vectors $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^{d_1}$ to a sequence of *n* vectors: $\mathbf{h}_1, ..., \mathbf{h}_n \in \mathbb{R}^{d_2}$

• The same abstraction as RNNs - used as a drop-in replacement for an RNN layer $\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$

$$
\mathbf{k}_{i} = \mathbf{W}^{(k)}\mathbf{x}_{i}, \quad \mathbf{v}_{i} = \mathbf{W}^{(v)}\mathbf{x}_{i},
$$
\n
$$
\left(\frac{\exp(\mathbf{q}_{i} \cdot \mathbf{k}_{j}/\sqrt{d})}{\sum_{j'=1}^{n} \exp(\mathbf{q}_{i} \cdot \mathbf{k}_{j'}/\sqrt{d})}\mathbf{v}_{j}\right)
$$

Step #1: Transform each input vector into three vectors: query, key, and value vectors

Note that we use row vectors here; It is also common to write $\mathbf{q}_i = \mathbf{W} \mathcal{Q} \mathbf{x}_i \in \mathbb{R}^{d_q}$ for \mathbf{x}_i = a column vector

$$
\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{Q} \in \mathbb{R}^{d_{q}} \qquad \mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{K} \in \mathbb{R}^{d_{k}} \qquad \mathbf{v}_{i} = \mathbf{x}_{i} \mathbf{W}^{V} \in \mathbb{R}^{d_{v}}
$$

$$
\mathbf{W}^{Q} \in \mathbb{R}^{d_{1} \times d_{q}} \qquad \mathbf{W}^{K} \in \mathbb{R}^{d_{1} \times d_{k}} \qquad \mathbf{W}^{V} \in \mathbb{R}^{d_{1} \times d_{v}}
$$

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax For each **q***ⁱ* , compute attention scores and attention distribution:

aka. "scaled dot product" It must be $d_q = d_k$ in this case

Keys

Q. Why scaled dot product? Values

Score To avoid the dot product to become too large 1 for larger d_k ; scaling the dot product by $\sqrt{d_k}$

https://jalammar.github.io/illustrated-transformer/

$$
d_{i,j} = \text{softmax}(\frac{\mathbf{q}_i \cdot \mathbf{k}_j}{d_k})
$$

is easier for optimization

Thinking Machines dding $X₁$ X2 $q₂$ q_1 es $k₂$ k_1 S $V₂$ $V₁$ q_1 • $k_1 = 112$ $q_1 \cdot k_2 = 96$ by 8 ($\sqrt{d_k}$) 12 14 0.88 0.12 ax ax $V₂$ $V₁$ *h*¹ *h*²

Input Embedding What would be the output vector for the word "Thinking" approximately? Queries Keys (a) $0.5v_1 + 0.5v_2$ Values (b) 0.54 **v**₁ + 0.46 **v**₂ Score (c) $0.88v_1 + 0.12v_2$ Divide by 8 ($\sqrt{d_k}$) Softmax (d) $0.12v_1 + 0.88v_2$ Softmax X Value (c) is correct.

Sum

Self-attention

Self-attention: matrix notations

 X 2 R^{n→ d_1} (n = input length)

 $Q = XW^Q$ $K = XW^K$ $V = XW^V$

W^Q 2 R^{*d*_{1→*dq*}}, *W^K* 2 R^{*d*_{1→*dk*}}, *W^V 2 R^{<i>d*_{1→}*d*_{*v*}</sub>}

Q: What is this softmax operation?

Multi-head attention

•

"The Beast with Many Heads"

It is better to use multiple attention functions instead of one! • Each attention function ("head") can focus on different positions.

Finally, we just concatenate all the heads and apply an output projection matrix.

$$
\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O
$$
\n
$$
\text{head}_i = \text{Attention}(XW^Q, XW^K, XW^V)
$$

Multi-head attention

"The Beast with Many Heads"

- In practice, we use ^a *reduced* dimension for each head. W_i^Q 2 R^{$a_1 \rightarrow a_q$}, W_i^R 2 R $a_1 \rightarrow a_k$, W_i^V 2 R $d_1 \rightarrow d_q$, $W_i^{\prime\prime}$ 2 R^{$a_1 \rightarrow a_k$}, W_i $K \rightarrow R^{d_1 \rightarrow d_k}$ *M*^V $\rightarrow R^{d_1 \rightarrow d_k}$ $d_q = d_k = d_v = d/m$ *d* = hidden size, *m* = # of heads W^O *2* R^{*d*_{→ d 2} If we stack multiple layers, usually $d_1 = d_2 = d$}
- The total computational cost is similar to that of single-head attention with full dimensionality.
-
-

What does multi-head attention learn?

https://github.com/jessevig/bertviz

Missing piece: positional encoding

- Unlike RNNs, self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values
- Solution: Add "positional encoding" to the input embeddings: $\mathbf{p}_i \in \mathbb{R}^d$ for $i = 1, 2, ..., n$

 \mathbf{x}_i $\mathbf{x}_i + \mathbf{p}_i$

• **Sinusoidal position encoding**: sine and cosine functions of different frequencies:

$$
p_{i} = \begin{pmatrix} \sin(i/10000^{2*1/d}) \\ \cos(i/10000^{2*1/d}) \\ \vdots \\ \sin(i/10000^{2*2/d}) \\ \cos(i/10000^{2*2/d}) \end{pmatrix}
$$

- **Pros**: Periodicity + can extrapolate to longer sequences
- **Cons**: Not learnable

Index in the sequence

Missing piece: positional encoding

- **Learned absolute position encoding:** let all **p***ⁱ* be learnable parameters
	- $P \in \mathbb{R}^{d \times L}$ for $L = \max$ sequence length
	- **Pros**: each position gets to be learned to fit the data
	- **Cons**: can't extrapolate to indices outside of max sequence length *L*
	- Most systems use this!

Self-Attention with Relative Position Representations

Peter Shaw Google petershaw@google.com

Jakob Uszkoreit Google Brain $usz@$ google.com

Ashish Vaswani Google Brain avaswani@google.com

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY **POSITION EMBEDDING**

Jianlin Su Zhuiyi Technology Co., Ltd. Shenzhen bojonesu@wezhuiyi.com

Ahmed Murtadha Zhuiyi Technology Co., Ltd. Shenzhen mengjiayi@wezhuiyi.com

Yu Lu Zhuiyi Technology Co., Ltd. Shenzhen julianlu@wezhuiyi.com

Bo Wen Zhuiyi Technology Co., Ltd. Shenzhen brucewen@wezhuiyi.com

Shengfeng Pan Zhuiyi Technology Co., Ltd. Shenzhen nickpan@wezhuiyi.com

Yunfeng Liu Zhuiyi Technology Co., Ltd. Shenzhen glenliu@wezhuiyi.com

Adding nonlinearities

- There are no elementwise nonlinearities in self-attention; stacking more self-attention layers just re-averages value vectors
- Simple fix: add a feed-forward network to post-process each output vector

 $FFN(x_i) = ReLU(x_iW_1 + b_1)W_2 + b_2$ W_1 2 $R^{d \rightarrow d_f}$ f, b_1 2 R^{d_f} **W**² *2* R*^d^f ^f* ⇥*^d ,* **b**² *2* R*^d*

In practice, they use $d_f = 4d$

Which of the following statements is correct?

(b) is correct.

- (a) Transformers have less operations compared to LSTMs
- (b) Transformers are easier to parallelize compared to LSTMs
- (c) Transformers have less parameters compared to LSTMs
- (d) Transformers are better at capturing positional information than LSTMs

Transformers vs LSTMs

Transformer encoder: let's put things together

From the bottom to the top:

- Input embedding
- Positional encoding
- ^A stack of Transformer encoder layers

- Multi-head attention layer
- Feed-forward layer
- Transformer encoder is a stack of *N* layers, which
	-

$\mathbf{h}_1, \ldots, \mathbf{h}_n \in \mathbb{R}^{d_1}$ **h**₁, ..., **h**_{*n*} $\in \mathbb{R}$ d_2

consists of two sub-layers:

$$
\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^{d_1}
$$

Residual connection & layer normalization Add & Norm: LayerNorm $(x + Sublayer(x))$

Residual connections (He et al., 2016) Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (*i* represents the layer)

$$
X^{(i-1)} \longrightarrow \text{Layer} \longrightarrow X^{(i)}
$$

We let $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$, so we only need to learn "the residual" from the previous layer

$$
X^{(i-1)} \longrightarrow \text{Layer} \longrightarrow X^{(i)}
$$

Gradient through the residual connection is 1 - good for propagating information through layers

Residual connection & layer normalization Add & Norm: LayerNorm $(x + Sublayer(x))$

Layer normalization (Ba et al., 2016) helps train model faster

Idea: normalize the hidden vector values to unit mean and stand deviation within each layer

[advanced]

$$
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
$$

γ, *β* ∈ \mathbb{R}^d are learnable parameters

Transformer decoder

Transformer decoder is a stack of *N* layers, which consists of three sub-layers:

- Masked multi-head attention
- Multi-head cross-attention
- Feed-forward layer
- (W/ Add & Norm between sub-layers)

From the bottom to the top: Output embedding Positional encoding A stack of Transformer decoder layers • Linear + softmax • • •

-
-
-
-

