
AIE1007: Natural Language Processing

L13: Self-attention and Transformers

Autumn 2024

Recap:Attention

‣ Encoder hidden states: henc, . . . , henc
1 n

(n: # of words in source sentence)

‣ Decoder hidden state at

time
: hdec

t

hdec
t

et = [g(henc, hdec), . . . , g(henc, hdec)] ∈ ℝn
1 t n t

‣ Attention scores:

‣ Attention distribution:

αt = softmax(et) ∈ ℝn

‣ Weighted sum of encoder hidden states:
n

a = α ht ∑
i=1

t enc h
i i ∈ ℝ

Combine at and hdec to predict next word
t

Note that henc, . . . , henc and hdec are hidden states from encoder and decoder RNNs..
1 n t

Recap:Attention

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

•

•

Attention addresses the “bottleneck” or fixed representation problem

Attention learns the notion of alignment

“Which source words are more relevant to the current target word?”

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup a in key-value store

Lookup table: a table of keys that map to

values. The query matches one of the keys,

returning its value.

Attention: The query matches to all keys

softly to a weight between 0 and 1. The

keys’ values are multipled by the weights

and summed.

(So far, we assume key = value)

Do you understand attention now?

(A) I understand the concept of attention and what it is for

(B) I understand the concept + its mathematical formulations

(C) I am still struggling

Understanding attention

Transformers

(Vaswani et al., 2017)

Transformer encoder-decoder

• Transformer encoder + Transformer decoder

• First designed and experimented on NMT

• Can be viewed as a replacement for seq2seq +

attention based on RNNs

Transformer encoder-decoder

•

•

Transformer encoder = a stack of encoder layers

Transformer decoder = a stack of decoder layers

Transformer encoder: BERT, RoBERTa, ELECTRA

Transformer decoder: GPT-3, ChatGPT, Palm

Transformer encoder-decoder: T5, BART

• Key innovation: multi-head, self-attention

• Transformers don’t have any recurrence structures!

ht = f(ht−1, xt) ∈ ℝ
h

Issues with recurrent NNs

• Longer sequences can lead to vanishing gradients ⟹ It is hard to capture long-

distance information

• RNNs lack parallelizability

•
•
•

Forward and backward passes have O(sequence length) unparallelizable operations

GPUs can perform a bunch of independent computations at once!

Inhibits training on very large datasets

RNNs / LSTMs seq2seq seq2seq + attention attention only = Transformers!

Transformers have become a new building block to replace RNNs

Transformers: roadmap

•
•
•
•
•
•

From attention to self-attention

From self-attention to multi-head self-attention

Feedforward layers

Positional encoding

Residual connections + layer normalization

Transformer encoder vs Transformer decoder

Reminder: we will ask you to

implement Transformer encoder-

decoder in A4!

Attention in a general form

• Assume that we have a set of values v1,…, vn ∈ ℝ
dv and a query vector q ∈ ℝdq

• Attention always involves the following steps:

•

•

Computing the attention scores

Taking softmax to get attention distribution :

↵= softmax(e) 2 Rn

Using attention distribution to take weighted sum of values:

n

a =
X

↵ivi 2 Rdv

i=1

•

e = g(q, vi) 2 Rn

Attention in a general form

• A more general form: use a set of keys and values (k1, v1),…, (kn, vn), ki ∈ ℝ
dk, vi ∈ ℝ

dv,

keys are used to compute the attention scores and values are used to compute the output vector

• Attention always involves the following steps:

•

•

Computing the attention scores

Taking softmax to get attention distribution :

↵= softmax(e) 2 Rn

Using attention distribution to take weighted sum of values:

n

a =
X

↵ivi 2 Rdv

i=1

•

e = g(q, ki) 2 Rn

Self-attention

• In NMT, query = decoder hidden state, keys =

values = encoder hidden states

Self-attention = attention from the sequence to itself•

•

https://jalammar.github.io/illustrated-transformer/

Self-attention: let’s use each word in a sequence as

the query, and all the other words in the sequence as

keys and values.

Self-attention

A self-attention layer maps a sequence of input vectors x1,…, xn ∈ ℝ
d1 to a

sequence of n vectors: h1,…, hn ∈ ℝ
d2

• The same abstraction as RNNs - used as a drop-in replacement for an RNN layer

ht = g(Wht−1 + Uxt + b) ∈ ℝh

Self-attention

Step #1: Transform each input vector into three vectors: query, key, and value vectors

qi = xiW
Q ∈ ℝdq

WQ ∈ ℝd1×dq

ki = xiW
K ∈ ℝdk

WK ∈ ℝd1×dk

vi = xiW
V ∈ ℝdv

WV ∈ ℝd1×dv

https://jalammar.github.io/illustrated-transformer/

Note that we use row vectors here;

It is also common to write

qi = WQxi ∈ ℝ
dq

for xi = a column vector

Self-attention

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax

For each qi, compute attention scores and attention distribution:

https://jalammar.github.io/illustrated-transformer/

↵i,j = softmax(p
d
)

qi ·kj

k

aka. “scaled dot product”

It must be dq = dk in this case

Q. Why scaled dot product?

To avoid the dot product to become too large

for larger dk; scaling the dot product by

is easier for optimization

1

dk

Self-attention

Step #3: Compute output for each input

as weighted sum of values

n

hi =
X

↵i,jvj 2 Rdv

j=1
(dv = d2)

https://jalammar.github.io/illustrated-transformer/

h1 h2

What would be the output vector for

the word “Thinking” approximately?

(a)

(c)

(c) is correct.

(b)

(d)

0.5v1 + 0.5v2

0.54v1 + 0.46v2

0.88v1 + 0.12v2

0.12v1 + 0.88v2

Self-attention

h1 h2

Self-attention: matrix notations

2 Rd1⇥dv

X 2 Rn⇥d1

Q = X W Q

(n = input length)

K = X W K V = X W V

W Q 2 Rd1⇥dq , W K 2 Rd1⇥dk , W V

dk × nn × dq

n

H

Q: What is this softmax operation?

× dv

https://jalammar.github.io/illustrated-transformer/

Multi-head attention

•
“The Beast with Many Heads”

It is better to use multiple attention functions instead of one!

• Each attention function (“head”) can focus on different positions.

https://jalammar.github.io/illustrated-transformer/

H0 H1 H7

Finally, we just concatenate all the heads and apply an output projection matrix.

headi = Attention(X W Q , X W K , X W V

)
i i i

Multi-head attention
“The Beast with Many Heads”

https://jalammar.github.io/illustrated-transformer/

• In practice, we use a reduced dimension for each head.

W Q
i 2 R 2 R 2 R

d1⇥dq , Wi , Wi
K d1⇥dk V d1⇥dv

d = hidden size, m = # of headsdq = dk = dv = d/m

WO 2 Rd⇥d2 If we stack multiple layers, usually d1 = d2 = d

• The total computational cost is similar to that of

single-head attention with full dimensionality.

What does multi-head attention learn?

https://github.com/jessevig/bertviz

Missing piece: positional encoding

•

•

Unlike RNNs, self-attention doesn’t build in order information, we need to encode the order

of the sentence in our keys, queries, and values

Solution: Add “positional encoding” to the input embeddings: pi ∈ ℝ
d for i = 1,2,…, n

xi xi + pi

Sinusoidal position encoding: sine and cosine functions of different frequencies:•

•
•

Pros: Periodicity + can extrapolate to longer sequences

Cons: Not learnable

Missing piece: positional encoding

• Learned absolute position encoding: let all pi be learnable parameters

• P ∈ ℝd×L for L = max sequence length

•
•

•

Pros: each position gets to be learned to fit the data

Cons: can’t extrapolate to indices outside of max sequence length L

Most systems use this!

Adding nonlinearities

• There are no elementwise nonlinearities in self-attention; stacking

more self-attention layers just re-averages value vectors

• Simple fix: add a feed-forward network to

post-process each output vector

FFN(xi) = ReLU(xiW1 + b1)W2 + b2

W1 2 Rd⇥df f ,b1 2 Rdf f

W2 2 Rdf f ⇥d,b2 2 Rd

In practice, they use df f = 4d

Which of the following statements is correct?

(a) Transformers have less operations compared to LSTMs

(b) Transformers are easier to parallelize compared to LSTMs

(c)

(b) is correct.

Transformers have less parameters compared to LSTMs

(d) Transformers are better at capturing positional information than LSTMs

Transformers vs LSTMs

Transformer encoder: let’s put things together

From the bottom to the top:

• Input embedding

• Positional encoding

• A stack of Transformer encoder layers

Transformer encoder is a stack of N layers, which

consists of two sub-layers:

•Multi-head attention layer

• Feed-forward layer

x1,…, xn ∈ ℝ
d1 h1,…, hn ∈ ℝ

d2

Residual connection & layer normalization
Add & Norm:

Residual connections (He et al., 2016)

Instead of X(i) = Layer(X(i−1)) (i represents the layer)

We let X(i) = X(i−1) + Layer(X(i−1)), so we only need to learn “the

residual” from the previous layer

Gradient through the residual connection is 1 - good for propagating information through layers

Residual connection & layer normalization
Add & Norm:

Layer normalization (Ba et al., 2016) helps train model faster

Idea: normalize the hidden vector values to unit mean and stand deviation within each layer

[advanced]

γ,β ∈ ℝd are learnable parameters

Transformer decoder

From the bottom to the top:

Output embedding

Positional encoding
A stack of Transformer decoder layers

Linear + softmax

Transformer decoder is a stack of N layers, which

consists of three sub-layers:

• Masked multi-head attention

• Multi-head cross-attention

• Feed-forward layer

• (W/ Add & Norm between sub-layers)

•
•
•
•Cross-attention

between source

and target sequence

Self-attention

within target

sequence

