
AIE1007: Natural Language Processing

L10: Recurrent neural networks - 2

Autumn 2024

Recap: Recurrent neural networks

h0 ∈ℝ
h is an initial state

RNNLMs:
Simple RNNs:

ht = g(Wht−1 + Uxt + b) ∈ℝh

g: nonlinearity (e.g. tanh, ReLU),

W ∈ℝh×h, U ∈ℝh×d, b ∈ℝh

ht : hidden states which store information from x1 to xt

ht = f(ht−1, xt) ∈ℝ
h

Bidirectional RNNs

h t = f1(h t−1, xt), t = 1,2,…n

h t = f2(h t+1, xt), t = n, n−1,…1

ht = [h t, h t] ∈ℝ
2h

Bidirectional RNNs

• Bidirectional RNNs are only applicable if you have access to the entire input

sequence (= they can’t do text generation!)

• If you do have entire input sequence, bidirectionality

is powerful (and you should use it by default)

• Modeling the bidirectionality is the key idea behind BERT

(BERT = Bidirectional Encoder Representations from

Transformers)

• We will learn Transformers and BERT in a few weeks!

• A very common choice for sentence/document

modeling: multi-layer bidirectional RNNs

Advanced RNN variants

ht = f(ht−1, xt) ∈ℝ
h

ht = tanh(Wht−1 + Uxt + b) ∈ℝh

it = σ(W iht 1 + Uix + bi)t

ft = σ(W f

ht

1 + U f x + bf)t

ot = σ(Woht 1 + Uox + bo)t

gt = tanh(Wght 1 + Ugx + bg)
— t

ct = ct 1 ①ft + gt ①it

ht = tanh(ct) θ ot

LSTMs GRUs rt = σ(Wrht 1 + Urx + br)t

zt = σ(Wzht 1 + Uzx + bz)
- t

h̃t = tanh(W(rt O ht 1) + Uxt + b)

ht = (1 - zt)①ht- 1 + zt①h̃t

Long Short-Term Memory RNNs (LSTMs)

A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution

to the vanishing gradients problem.

• Everyone cites that paper but really a crucial part of the modern LSTM

is from Gers et al. (2000)

Recap: Vanishing Gradient Problem

h2 = g(Wh1 + Ux2 + b)

h3 = g(Wh2 + Ux3 + b)

L3 = − log ŷ3(w4)

∂L3 =
∂L3 ∂h3 +

∂W ∂h3 ∂W
+

∂L

∂W
= −

1
n ∑ ∑ ∂ht

n t

t=1 k=1

∂Lt
t

∏ ∂hj−1
j=k+1

∂hj ∂hk

∂W

If k and t are far away, the gradients are very easy to grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)

∂L3∂h3∂h2

∂h3∂h2∂

W

∂L3∂h3 ∂h2∂h1

∂h3∂h2 ∂h1∂

W

Recap: Vanishing Gradient Problem

(Slide credit: Chris Manning)

LSTMs:The intuition

• Key idea: turning multiplication into addition and using “gates” to control how much

information to add/erase

• At each time step, instead of re-writing the hidden state ht = g(Wht−1 + Uxt + b), there is

also a cell state ct ∈ℝ
h which stores long-term information

•

•

We write to/erase information from ct after each step

We read ht from ct

LSTMs: the formulation

• Input gate (how much to write):

it = σ(Wiht−1 + Uixt + bi) ∈ℝh

• Forget gate (how much to erase):

ft = σ(Wfht−1 + Uf xt + b f) ∈ℝh

• Output gate (how much to reveal):

ot = σ(Woht−1 + Uoxt + b(o)) ∈ℝh

• New memory cell (what to write):

gt = tanh(Wght−1 + Ugxt + bg) ∈ℝh

• Final memory cell: ct = ft⊙ ct−1 + it⊙ gt

element-wise product

• Final hidden cell: ht = ot⊙ tanh(ct)

h0, c0 ∈ℝ
h

are initial states (usually set to 0)

LSTMs: the formulation

LSTMs has 4x parameters compared to

simple RNNs:

Input dimension: d, hidden size: h

ht = g(Wht−1 + Uxt + b) ∈ℝh

W ∈ℝh×h, U ∈ℝh×d, b ∈ℝh

ℝ4h×(h+d)

Simple RNNs:
Wi, Wf , Wg, Wo ∈ℝh×h

Ui, Uf , Ug, Uo ∈ℝh×d

bi, b f , bg, bo ∈ℝh

ht = (tanh)W
✓
h
◆

t 1

xt

What is the range of values?

Q: What is the range of values for each element in the hidden representations ht?

(a) 0 to

(b) 0 to 1

(c) -1 to 1

(d) to

The answer is (c).

LSTMs: the formulation

•LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does provide

an easier way for the model to learn long-distance dependencies

• LSTMs were invented in 1997 but finally got working from 2013-2015.

Visualization of LSTMs

Christopher Olah

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Visualization of LSTMs

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Visualization of LSTMs

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state = a conveyor belt

It allows adding or removing information,

carefully regulated by gates

Visualization of LSTMs (Warning: notation change!)

Visualization of LSTMs (Warning: notation change!)

Visualization of LSTMs (Warning: notation change!)

Visualization of LSTMs (Warning: notation change!)

Gated Recurrent Units (GRUs)

• Introduced by Kyunghyun Cho et al. in 2014:

• Simplified 3 gates to 2 gates: reset gate and update gate, without an explicit cell state

Gated Recurrent Units (GRUs)

• Reset gate:

rt = σ(Wrht

• Update gate:

1 + Urx + br)
t

zt = σ(Wzht
-

1 + Uzx + bz)t

merge input and forget gate!

• New hidden state:

h̃t = tanh(W(rt O ht 1) + Uxt + b)

ht = (1 - zt)①ht- 1 + zt①h̃t

Q: What is the range of the hidden representations ht?

Q: How many parameters are there compared to simple RNNs?

Comparison of LSTMs and GRUs

Let’s compare LSTMs and GRUs. Which of the following statements is correct?

(a) GRUs can be trained faster

(b) In theory LSTMs can capture long-term dependencies better

(c) LSTMs have a controlled exposure of memory content while GRUs don’t

(d) All of the above

The answer is (d). All of these are correct.

(Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

LSTMs vs GRUs

Music modeling

LSTMs vs GRUs

Speech signal modeling

https:/ / imgflip.com/i/495iim

(only for fun!!!)

(Chung et al, 2014): Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Are LSTMs and GRUs optimal?

(Jozefowicz et al, 2015): An Empirical Exploration of Recurrent Network Architectures

Comparison: FFNNs vs simple RNNs vs LSTMs vs GRUs

Feedforward NNs Simple RNNs LSTMs GRUs

Practical takeaways

Last lecture

Simple recurrent units (SRU)

•
•

Lighter form of recurrent neural networks

Enable high amounts of parallelism in

computation, while maintaining expressivity of

recurrent computation

Use of CUDA kernels to maximize parallel

operations
•

2017

(Lei et al, 2017): Simple Recurrent Units for Highly Parallelizable Recurrence

