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ABSTRACT
Current research on interpretability tend to focus on building in-
terpretable models for highly non-interpretable neural nets. Lit-
tle work has been done on employing interpretability for refining
models. We propose to leverage transfer learning to refine deep
neural nets. Combinedwith a contemporary data visualization tech-
nique for interpretation, we are able to show empiricallywhyVGG19
has better classification accuracy than Alexnet on the CIFAR-10
dataset through quantitative and qualitative visualizations on each
of the hidden layers. This approach could be applied to refine neu-
ral nets when altering the parameters of the hidden layers for deep
neural nets. Compared with a previous approach which just apply
neural feature visualization, we are able to show not only qualita-
tively but also quantitatively why one model has higher accuracy
than another one. Compared with Knowledge Distillation, we di-
rectly interpret the complex model using transfer learning via a
simpler dataset, without distilling the complex model into a shal-
low one.
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1 INTRODUCTION
With the fast development of sophisticated machine learning al-
gorithms, artificial intelligence has been gradually penetrating a
number of brand new fields with unprecedented speed. One of the
outstanding problems hampering its further progress is the inter-
pretability challenge. This challenge arises when the models built
by the machine learning algorithms are to be used by humans in
their decisionmaking, particularlywhen such decisions are subject
to legal consequences and/or administrative audits. For human de-
cision makers operating in those circumstances, to accept the pro-
fessional and legal responsibility ensuing from decisions assisted
by machine learning, it is critical to comprehend the models. This
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is generally true for areas such as criminal justice, health care, ter-
rorism detection, education systems and financial markets.

Deep Neural Networks (DNNs) have revolutionized the field
of artificial intelligence with their unparalleled ability to perform
complex tasks across various domains, including image recogni-
tion, natural language processing, and medical diagnosis. Despite
their success, DNNs are often criticized for their lack of interpretabil-
ity, which poses significant challenges in critical applicationswhere
understanding the decision-making process is essential.

Interpretability in deep learning refers to the ability to explain
or to present in understandable terms to a human how a model
makes its decisions [15]. The demand for interpretability arises
from the need for transparency, accountability, and trust in AI
systems, especially in high-stakes domains such as healthcare and
criminal justice. Interpretability is not only crucial for validating
the model’s reasoning but also for identifying biases, ensuring fair-
ness, and facilitating the improvement of the model by understand-
ing its shortcomings.

Interpretability can serve as a powerful tool for refining DNNs.
By understanding themodel’s decision-making process, researchers
and practitioners can identify and correct errors, remove biases,
and improve the model’s generalization capabilities. For instance,
biology-inspired deep learning models, which incorporate biologi-
cal knowledge into their architecture, have shown that interpreta-
tions can vary and be influenced by biases in the underlying knowl-
edge [22]. Addressing these biases can lead to more robust and
reliable interpretations, ultimately improving the model’s perfor-
mance.

Moreover, interpretability can enhance the adversarial robust-
ness of DNNs. Regularizing input gradients to improve interpretabil-
ity has been shown to increase the model’s resistance to adversar-
ial attacks [28]. This suggests that interpretability and robustness
may be interconnected, and focusing on one can benefit the other.

Speaking of interpretability, we should be cautious that themean-
ing is two-fold: one from the perspective of the end users and the
other from the perspective of the model designers, which demand
different explanations and measures of efficacy. For end users, it
is mainly employed to illustrate predictions in unforeseen circum-
stances and build a sense of trust. For model designers, it is useful
to diagnose and refine the models. Current research [14, 17, 21,
27, 33] tend to focus on learning interpretable models, but these
models are seldom leveraged to help diagnose [40] and refine the
non-interpretable complex models.

Recent research hasmade significant strides in developingmeth-
ods to interpret and explain the decisions of DNNs. Interpretation
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tools aim to shed light on the black-box nature of thesemodels, pro-
viding insights into their decision-making processes [15]. A com-
prehensive survey by Li et al. (2022) [15] introduces two fundamen-
tal concepts: interpretations and interpretability, which are often
conflated. Interpretations are the explanations provided for indi-
vidual decisions, while interpretability is the overall characteristic
of a model that describes how easy it is to understand its workings.

A taxonomy of interpretation algorithms has been proposed,
categorizing them based on different perspectives, such as the type
of explanation they provide (e.g., local vs. global) and the tech-
niques they employ (e.g., perturbation-based, decomposition-based).
Performancemetrics for evaluating these algorithms have also been
surveyed, which is crucial for assessing the effectiveness of inter-
pretation methods.

In this paper, we demonstrate from the angle of the model de-
signers on how interpretability could help improve a model’s accu-
racy. The research that most close to ours is a feature visualization
approach proposed in [38] that employs visual interpretation to
diagnose the problems of a already existing deep learning model:
Alexnet [13] to refine it. They utilizes a multi-layered Deconvolu-
tional Network (Deconvnet) [39] (initially designed for unsuper-
vised learning), which maps the feature activities back to the in-
put pixel space and could find the optimal stimulus at any hidden
layers in the model. After visualizing the first and second hidden
layers of the Alexnet, they reduced the filter size of the first hidden
layer from 11 × 11 to 7 × 7 and the stride of convolution from 4 to
2. The resulting model outperforms the architecture of Alexnet for
their single models by 1.7% (test top-5).

However, the justification / intuition for the choice of smaller
filters wasn’t convincing enough. Their conclusion relies on the
vague differences of visualizations. They changed the parameters
of the first hidden layer, but when we examine the corresponding
visualizations in the first hidden layer we don’t see much differ-
ences visually. In this paper, we propose amethod to quantitatively
measure the visualizations on each hidden layer.

Our research focus on developing methods that enhance inter-
pretability without compromising the model’s accuracy. One re-
lated promising approach is the use of symbolic expressions to
add interpretability to already-trained models [18]. This method
fits symbolic expressions to the functions within the model, poten-
tially offering a way to maintain high accuracy while providing
interpretable predictions.

Another related research to ours is Knowledge Distillation [7]
[5] [33], which refers to the process of distilling the dark knowl-
edge learned by a teacher model (usually sophisticated and large)
to a student model (usually shallow and small). Different from the
KnowledgeDistillation technique, our approach interprets the deep
learning model directly through transfer learning without distill-
ing it into a shallow neural network.

The contributions of this paper are several fold: first, feature
visualization and data visualization are two separate visualization
techniques, we are the first to combine them together to refine neu-
ral network models more convincingly; second, we are also the
first to use visualization techniques for interpreting the transfer
learning results on CIFAR-10 dataset; third, we propose a way to
quantity interpretation results via transfer learning; fourth, unlike
knowledge distillation, we interpret deep learning models directly

without distillation; finally, we are also the first to compare the re-
sults of two different visualization methods (feature visualization
and data visualization) on the same dataset.

2 METHOD
There are a number of interpretation methods proposed for neu-
ral networks, which could be roughly categorized as post-hoc in-
terpretations, inherently interpretable models and other models
such as Influence Functions (IF) [12], SHapley Additive exPlana-
tions (SHAP) [19], Information Bottleneck (IB) [31], etc. Post-hoc
Interpretations [21] [6] interprets black box models after they are
trained, hence, the name “Post-hoc”. Usually, this requires the build-
ing of a separate interpretation model or technique to explain the
predicted decisions or the model itself. The majority of the inter-
pretation methods belong to this class and here we roughly di-
vide them into four subcategories: Interpretation by Perturbation
[30][21], Local Interpretations [27], Global Interpretations [14] [2]
[33] and Visualization. Among visualization techniques, there are
neural feature visualization, attribution and data visualization [25].
In this paper, we compare the results of feature visualization with
data visualization for refining deep neural nets.

2.1 Neural feature visualization
With the thriving progress made in the past few years, feature vi-
sualization has established itself as the most promising research
direction for neural network interpretations.

Usually, the most commonly applied technique is Activation
Maximization (AM) [4]. This method enables the interpretation of
arbitrary layers of a neural network, not just the first layer repre-
sentation (linear weights in the input-to-first layer weight matrix)
that could be easily interpreted by the learned filters . It also as-
sumes that the input data are meaningful and displayable for hu-
mans, e.g. image data.

The idea of Activation Maximization is remarkably simple, but
could generate high-quality visualizations. It essentially searches
for input patterns which maximize the activation of a given hidden
unit. This works because the patterns which fire the maximum ac-
tivation could be a good first-order representation of what a unit is
doing. This idea could be formulated as an optimization problem:

𝑥∗ = argmax
𝑥

ℎ𝑖 𝑗 (𝜃, 𝑥) (1)

Here 𝑥∗ is the optimal input pattern that the method tries to find
andℎ𝑖 𝑗 stands for the activation at unit 𝑖 from a given layer 𝑗 of the
previous layers and 𝜃 represents the parameters of model. For an
already trained neural network, these parameters are known. The
maximum of ℎ𝑖 𝑗 is found by calculating the gradient of ℎ𝑖 𝑗 (𝜃, 𝑥)
and moving 𝑥 in the direction of this gradient. This step is called
gradient ascent.

However, there are two shortcomings to this approach. First, it
is hard to do initialization. It was mentioned that different random
initializations sometimes generate the same optimal stimulus [4].
Second, the information about the invariance (the range of inputs
that the unit is invariant to) is not available from the optimal stim-
uli which is just a single image. To address the second disadvan-
tage of AM, the creators of Tiled convolutional neural networks
(TCNN) [23] applied the method in [1] and extend it to arbitrary
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networks in order to visualize the invariant directions of a hidden
unit 1. However, the output of hidden neurons for TCNN are non-
quadratic functions of inputs while [1] studies quadratic functions.
This makes the extremely complex invariance of TCNN hard to be
precisely captured.

Hence, another visualization approach [38]which utilizes amulti-
layered Deconvolutional Network (Deconvnet) [39] (initially de-
signed for unsupervised learning) is proposed to find non-parametric
views of invariances.This approachmaps the feature activities back
to the input pixel space and could find the optimal stimulus at any
hidden layers in the model. This method is also a successful case
that employs visual interpretation to diagnose the problems of a
already existing model [13] to improve the results. Therefore, in
our paper we adopt Deconvnet as our neural feature visualization
method.

2.2 Data visualization
Understanding data by visualizing them is an intuitive and impor-
tant approach. Plotting two or three dimensional data is an easy
task for most graphing tools. But for data that has more than three
dimensions, special techniques are needed to transform them into
amore visually understandable two-dimensional space.These tech-
niques are called Dimension Reduction [36].They could also be po-
tentially helpful for assisting the interpretation of black box mod-
els.

Some of the popular dimension reduction techniques are Prin-
cipal Component Analysis (PCA) [10], Multidimensional Scaling
(MDS) [35] [3], t-distributed Stochastic Neighbor Embedding (t-
SNE) [20] and Autoencoder networks [9]. Among these, t-SNE has
become the de facto standard for a variety of applications. t-SNE
mitigates the two problems that SNE [8] has: the optimization prob-
lem and the ‘crowding problem’. It is able to reveal the local struc-
ture of the data as well as the global structure (such as clusters at
multiple scales). And it also generates significantly better visualiza-
tions which was demonstrated in experiments [20] by comparison
with many other non-parametric visualization techniques such as
Sammon mapping, Isomap, and Locally Linear Embedding.

Recently, there are some applications of applying dimension re-
duction for interpretability. Two dimensional embedding is gener-
ated in [11] applying t-SNE on the hidden layers of Alexnet. t-SNE
is also applied for reinforcement learning in [37]. In [24], PCA and
t-SNE are employed combined with the k-means algorithm for the
purpose of different facet visualizations. Similarly, a dimension re-
duction technique (not specified in the paper) is applied in [34]
to present the final visualization of the treeview method they pro-
posed for peeking into the classification process of a multi-layer
perceptron. In this paper, we plan to quantify interpretation results
utilizing t-SNE.

2.3 Compare Deconvnet and t-SNE to refine
deep convnets

Neural feature visualization and data visualization are two sepa-
rate interpretation strategies. In the past few years, they develop

1Thevisualization results are here: http://ai.stanford.edu/ quocle/TCNNweb/index.html

along each of their own paths, but never were combined for inter-
pretation. Neural feature visualization has the advantage of show-
ing intuitively what information a neural net relies on to make a
specific decision. For instance, in figure 2 [38], for the results in
layer 5, row 1, col 2, it is noticeable that when just examining the
image patches of layer 5 it seems that they have nothing in com-
mon. But after looking at its feature visualization we realize that
it detects the grass in the background. However, the biggest dis-
advantage of this approach is how to measure the interpretability
quantitatively (to what extent an interpretation is better than an-
other one), which is also a common problem for other visualization
techniques.

To overcome this disadvantage, we Apply t-SNE on the same
dataset and use neighborhood hit (NH) [26] to measure the projec-
tion quality, which generates values to quantitatively interpret a
neural net. For a specific point 𝑝 , we select its 𝑘 nearest neighbours
and calculate its NH: 𝑁𝐻𝑝 as the ratio of the number of points be-
longing to the same class 𝑐 as 𝑝 . The NH for all the points of the
projection is the average of NH over all the points.

𝑁𝐻𝑝 =
𝑁𝑐

𝑁

����
𝑘

(2)

𝑁𝐻 =

∑
𝑁𝐻𝑝

𝑁
(3)

Our proposed approach is shown in Fig. 1. In this figure, we
present our method in the case when we apply transfer learning
based onAlexnet.The ImageNet data is first used to train theAlexnet
and then the pretrained model is applied on the CIFAR-10 dataset.
The blue blocks in Fig. 1 represent the portions that the two net-
works share (before transfer and after transfer). The green blocks
are the fully connected layers, which are different for the two net-
works because the ImageNet dataset has 1000 classes while the
CIFAR-10 dataset has only 10 classes. After the transfer learning
process, both feature visualization (we use Deconvnet) and data
visualization (we use t-SNE) are applied on the hidden layers of
the transferred neural nets. Then we compare their results. When
refining a neural net, both of the visualizations could be combined
for better detection.

The pseudo code of our algorithm is shown in Algorithm 1.
In this algorithm, for the hidden activation valuesℎ𝑖 at each hid-

den layer, we first compute the conditional probability 𝑝 𝑗 |𝑖 which
is then applied to calculate the joint probability 𝑝𝑖 𝑗 . The low di-
mensional representation is then calculated iteratively within 𝑇
iterations employing the derived gradient in equation (4).

𝑝 𝑗 |𝑖 =
exp(−∥𝑥𝑖 − 𝑥 𝑗 ∥2/2𝜎2𝑖 )∑
𝑘≠𝑖 exp(−∥𝑥𝑖 − 𝑥𝑘 ∥2/2𝜎2𝑖 )

(4)

Here 𝜎𝑖 is the variance of the Gaussian distribution. Meanwhile,
each m-dimensional hidden node 𝑥𝑖 will have a corresponding d-
dimensional counterpart𝑦𝑖 .The similarity between𝑦𝑖 and𝑦 𝑗 could
also be modeled as a probability 𝑞 𝑗 |𝑖 . We can express 𝑞 𝑗 |𝑖 as fol-
lows:

𝑞 𝑗 |𝑖 =
exp(−∥𝑦𝑖 − 𝑦 𝑗 ∥2)∑
𝑘≠𝑖 exp(−∥𝑦𝑖 − 𝑦𝑘 ∥2)

(5)
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ImageNet data
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CIFAR-‐10 data

conv1

maxpooling1

conv2

maxpooling2

conv3

conv4

conv5

maxpooling5

fc1

softmax

softmax

loss

loss

transfer refine

feature visualization

data visualization

Figure 1: Architecture for refining deep convnets.

Algorithm 1
1: Input: training dataset𝐶𝑡𝑟 ; test dataset𝐶𝑡𝑒 ; dimension reduc-

tion parameters: perplexity 𝑝𝑒𝑟𝑝 , iterations 𝑇 , learning rate 𝜂,
momentum 𝛼 (𝑡); pre-trained neural net model: 𝑀 .

2: 𝐶𝑡𝑟
𝑟𝑒𝑠𝑖𝑧𝑒−−−−−→ (𝐶𝑡𝑟 )𝑟

3: 𝑀𝑛 = 𝑀 ((𝐶𝑡𝑟 )𝑟 )
4: 𝐶𝑡𝑒

𝑟𝑒𝑠𝑖𝑧𝑒−−−−−→ (𝐶𝑡𝑒 )𝑟
5: 𝐻 = 𝑀𝑛 ((𝐶𝑡𝑒 )𝑟 )
6: for hidden activations ℎ𝑖 = ℎ1, · · · , ℎ𝐻 do
7: compute 𝑝 𝑗 |𝑖 with 𝑝𝑒𝑟𝑝

8: set 𝑝𝑖 𝑗 =
𝑝 𝑗 |𝑖+𝑝𝑖 | 𝑗

2𝑛
9: Initialize 𝑌 (0)

10: for 𝑡 = 1 to 𝑇 do
11: compute 𝑞𝑖 𝑗 in 𝑑-dimensional space
12: compute gradient 𝑑𝐿

𝑑𝑦

13: set 𝑌 (𝑡 ) = 𝑌 (𝑡−1) + 𝜂 𝑑𝐿
𝑑𝑦 + 𝛼 (𝑡)(𝑌 (𝑡−1) − 𝑌 (𝑡−2) )

14: end for
15: compute 𝑁𝐻 for 𝑌
16: end for
17: Output: {𝑁𝐻1, 𝑁𝐻2, · · · , 𝑁𝐻𝐻 }

3 EXPERIMENTS
We apply our approach on two deep neural nets: Alexnet [13] and
VGG19 [32]. Both of them are originally trained on the ImageNet

Table 1: CIFAR-10 Dataset

Dataset Details
#Features #Train #Test Classes
32 × 32 × 3 50,000 10,000 10

dataset [29]. We then apply the pre-trained models on the CIFAR-
10 dataset and fine tune the transferred models. It’s noticeable that
the image size for the ImageNet dataset is 224 × 224 × 3 while
that is 32 × 32 × 3 for the CIFAR-10 dataset. Hence, we resized
the image size of CIFAR-10 dataset to 224 × 224 × 3 to fit the data
to the pre-trained neural nets. The details for the CIFAR-10 dataset
is shown in Table 1 and the parameters used for fine tuning the
pre-trained models on CIFAR-10 is displayed in Table 2. The test
accuracy for Alexnet on CIFAR-10 is 79% and 91% for VGG19. The
code for our experiments can be downloaded from the following
GitHub repository.2

Deconvnet results. To do Deconvnet visualization, for illustra-
tion, we randomly pick a test instance showing a truck. The origi-
nal image of this test instance is shown in Fig. 2. We then use the
Deconvnet technique to generate the visualizations of the input
image reconstructed from each of the feature maps on the speci-
fied hidden layers for both neural nets. Fig. 3 shows a comparison
of the results. Within each picture, each block represents for the
2https://github.com/jadecranberry/Quantified-Data-Visualization-QDV/tree/main

https://github.com/jadecranberry/Quantified-Data-Visualization-QDV/tree/main
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Table 2: Parameter settings for fine tuning

Alexnet & VGG19
learning rate batch size #epochs
0.00001 16 10

Figure 2: A test instance for Deconvnet visualization.

visualization generated by each feature map within a specific hid-
den layer. For instance, the first maxpooling layer of Alexnet has
96 feature maps and hence there are 96 visualization blocks. Please
note that these figures need to be magnified to observe differences.

We can infer from the figures that for each neural net, higher
hidden layers would detect more specific visualizaitons: revealing
more obvious features contributing to a truck. But it is difficult to
deduce whether the visualizations of vgg19 are truely better than
that of Alexnet on the hidden layers when just inspecting the fig-
ures, especially for the hidden layers after the 3rd hidden layer.
Therefore, in the second step, we apply t-SNE to quantify the visu-
alization results.

t-SNE results. In order to obtain quantitative visualization re-
sults, we randomly subsampled 1000 test instances from the origi-
nal 10,000 test instances. Then we extracted the values of the hid-
den activations for these test instances corresponding to each of
the hidden layers. Subsequently, we normalized the data and ap-
ply t-SNE on these data. We use NH to quantity the quality of pro-
jections. The results for both neural nets are shown in Table 3 and
Fig. 4. It is noticeable that the NH values are comparable in the first
two hidden layers and VGG19 has higher NH values than Alexnet
for the rest of the hidden layers.

It should be noted that a better neural net structure doesn’t nec-
essarily mean that at every hidden layer its NH value should be
higher. In this case, although the NH values are comparable for
these two neural net at the first and second layers, VGG19 gradu-
ally surpass Alexnet on the higher layers and especially on the last
layer. This conclusion also agrees with the results in [38]. They
changed the architecture in the first hidden layer, but we can’t ob-
serve much visual difference in this layer. However, the difference
seems to be clearer in the second hidden layer. We consider this as
a latent effect in the architecture change.

Discussion. The quantitative results on t-SNE visualization indi-
cate that VGG19 indeed has a better structure than Alexnet, which
provide stronger proof than just using the Deconvnet approach.
By applying transfer learning, we can also avoid the performance

(a) Alexnet:maxpool1 (b) VGG19:maxpool1

(c) Alexnet:maxpool2 (d) VGG19:maxpool2

(e) Alexnet:CONV3 (f) VGG19:maxpool3

(g) Alexnet:CONV4 (h) VGG19:maxpool4

(i) Alexnet:maxpool5 (j) VGG19:maxpool5

Figure 3: Deconvnet results
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Table 3: NH for t-SNE at each hidden layer

hidden layers Alexnet VGG19
1st 0.21 0.22
2nd 0.25 0.24
3rd 0.29 0.34
4th 0.35 0.42
5th 0.45 0.80

loss of distilling a complex model (teacher) into a simpler one (stu-
dent) [16]. Also, transfer learning on a simpler dataset (CIFAR-10)
enables more clearer t-SNE visualizations than those on the Ima-
geNet data [11].

(a) Alexnet:maxpool1 (NH=0.21) (b) VGG19:maxpool1 (NH=0.22)

(c) Alexnet:maxpool2 (NH=0.25) (d) VGG19:maxpool2 (NH=0.24)

(e) Alexnet:CONV3 (NH=0.29) (f) VGG19:maxpool3 (NH=0.34)

(g) Alexnet:CONV4 (NH=0.35) (h) VGG19:maxpool4 (NH=0.42)

(i) Alexnet:maxpool5 (NH=0.45) (j) VGG19:maxpool5 (NH=0.80)

Figure 4: t-SNE results

4 CONCLUSIONS
In this paper, we attempt to diagnose and refine neural nets more
convincingly.The experiments are implemented on two neural nets:
the Alexnet and the VGG19. Using transfer learning, we are able to
use the pretrained neural nets on the CIFAR-10 dataset. Employing
the quantitative results on t-SNE visualization, we are able to re-
veal quantitatively why VGG19 has higher accuracy than Alexnet
on the same dataset. This conclusion is more convincing than that
in [38] when they just use the visualization of Deconvnet to justify
their selection of filter size and stride of convolutional layer. Also
applying transfer learning enables us to interpret the neural nets di-
rectly on a simper dataset, without distilling a complex model into
a shallow model as in knowledge distillation. This is more advan-
tegeous of maintaining the accuracy of the complex model while
still enables easier interpretation on a smaller dataset.
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